
`

Workshop to Develop a Building Code and Research Agenda for
Power System Software Security: Final Report

Carl E. Landwehr
Cyber Security and Privacy Research Institute

George Washington University

Alfonso Valdes
Information Trust Institute (ITI)

University of Illinois

Report GW-CSPRI-2017-01

March 8, 2017

Support for this research was provided by the National Science
Foundation (Grant CNS-145211), the Department of Energy (CREDC,

DoE Award Number DE-OE0000780), and the IEEE Cybersecurity
Initiative

Workshop to Develop a Building Code and Research Agenda for Power System Software
Security: Final Report

Abstract

Both the attractiveness of power systems as targets of cyberattack and their vulnerability to remote attack
via digital networks has been made clear by recent world events. While policy makers seek means to
deter such attacks politically, surely the most effective way to reduce their attractiveness as targets is to
reduce their vulnerability to such attacks. This can be done; these are engineered systems built to satisfy
specifications. The results of the workshop presented here have the objective of reducing the vulnerability
of future power systems to remote attacks that exploit vulnerabilities in the code – software or firmware –
that controls their operation. The approach taken is to develop a consensus “building code” for building
the software that controls these systems. Such a building code can provide a basis for customers to specify
the security required of power system software components, for vendors to produce them, and for third
parties to evaluate important aspects of their security properties. The availability and use of such a code
can enable the marketplace to reward producers of systems with stronger security properties.

Workshop to Develop a Building Code and Research Agenda for Power System Software
Security: Final Report

Table of Contents
1. Background……………………………………………………………………………………………… 1
2. Power System Context…………………………………………………………………........................... 1
3. The Need for a Secure Software Development Process……………………………………………….... 1
4. Security Policy’s Central Role……………………………………………………………….................. 2
5. Minimization of function ……………………………………………………………………….............. 2
6. Challenges……………………………………………………………………………………….............. 3
7. How might this report be used?…………………………………………………………………………. 3
8. Acknowledgements……. ……………………………………………………………………….............. 4
9. References……….………………………………………………………………………………………. 5
APPENDICES……………………………………………………………………………………………... 6
Appendix A – Draft Building Code for Power System Software Security……………….……………..….6
Appendix B – Research Agenda for Power Systems Cyber Security……..………………………………17
Appendix C – Call for Participation, including Workshop Proposal…………………………….....……..19
Appendix D – IEEE Invitational Workshop to Create a Building….…………………………..…………27
Appendix E – List of Participants……………………………….….…………………………..…………30

1. Background

The idea of improving the security of fielded software in domains with critical security requirements
through the development of a “building code” that might be used by customers, developers, and
evaluators was first proposed in 2012 [1]. An initial workshop to establish such a code for software
controlling medical devices was held in November 2013 with support of the IEEE Cybersecurity Initiative
and the National Science Foundation’s Secure and Trustworthy Cyberspace program. A draft code was
published in 2014 [2, 3] and continues to provide a stimulus to those developing security standards in that
domain. The present workshop was organized in a similar fashion to address development of a building
code for software in the domain of power systems. The draft building code for power system software
security is incorporated as Appendix A of this report, while Appendix B provides a research agenda
motivated by the discussions held at the workshop. Appendices C and D provide the workshop
preparation documents and the final agenda. Appendix E lists the participants.

2. Power System Context

This effort is motivated by the power system environment, including supply, demand, transmission,
distribution, generation, smart grids, and microgrids, including residential use. The systems in this
environment have requirements for both local and remote access and local and remote control. This
access will be via networks that support digital communications. Some may be isolated, but some will be
Internet-connected. To maintain the reliability and safety of these structures, cybersecurity is an issue of
increasing concern in the power system environment as a whole.

In the realm of physical structures, building codes can incorporate a very broad range of requirements,
from architectural and design requirements that apply to large public structures or neighborhoods to
requirements on type and strength of materials to be used in construction. But a building code is not a
design manual. It is a guideline that provides minimum expectations and recommended practices so that a
building that conforms to the code should at least be safe and sound. While it cannot guarantee overall
system security or reliability, a software building code for power systems will still improve the security
posture of the software and systems being developed in this industry. Software must, as always, meet
organizational and operational requirements, mitigate threats, and minimize flaws.

3. The Need for a Secure Software Development Process

It continues to be the case that most successful cyber intrusions exploit vulnerabilities that were
accidentally introduced into the software at the implementation stage, i.e., when programmers convert
specifications to code. For this reason, this draft building code focuses most strongly on techniques for
preventing the introduction of such implementation flaws or for finding and correcting them. However,
the consensus of this workshop was that there is a fundamental need for a secure software development
process to be put in place to organize the production of software for power systems. Participants
proposed that two flows of requirements must be conducted in parallel as part of this process:

System requirements  device requirements  software
Security policy  security requirements  secure implementation

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 1

4. Security Policy’s Central Role

In this context, security policy becomes part of the system requirements, and system security must be seen
as not only preventing unintended things from happening but also ensuring that the system does perform
its intended functions. Security policy in this light becomes the statement of what it means for the system
to provide service that is dependable and secure in the sense of [4], in which a protection mechanism
(e.g., a circuit breaker) is dependable to the extent that it operates at appropriate times and is secure to the
extent that it doesn’t operate at other times. In this lexicon, a system is considered reliable to the extent
that it is both dependable and secure1.

A system is secure only with respect to its stated security policy (and insecure only when and if those
policy statements are violated). The specific security controls included in a system (e.g., authentication,
access control, information flow control, cryptographic controls) are chosen in order to implement and
enforce the policy.

Overall system design will determine whether software, hardware, or people operating the system are
responsible for assuring that particular aspects of an overall security policy are correctly enforced. This
document primarily addresses those aspects of security policies that are to be assured by software.

The building code can assist in the selection of proper controls to achieve the system’s security policy as
part of the software development process, just as codes for physical buildings assist the architect,
developer, and builder in determining the safe width for stairways and fire exits. The essential first step
in developing secure software is the security policy; the remainder of this building code is intended as a
guideline to assist in the selection of controls and implementation of the controls necessary to enforce the
policy.

5. Minimization of function

Among cybersecurity professionals, it is often said that complexity is the enemy of security [6,7,8].
Nevertheless, the economics of chip production and software production have led to the prevalence of
computing hardware with broad capabilities and software that frequently includes many features and
options bundled together. Features included a chip or application that the purchaser does not even know
are present have often been exploited to penetrate a system.

Although not originally proposed as an element for the building code (and hence not included explicitly in
Appendix A), the principle of disabling unneeded / unused functions was part of the workshop consensus.
Different functions of a device might be disabled according to the application in which it is to be used; the
building code would apply to the software developed for the device regardless of its application. Note that
if the software implementing a disabled function is not removed, care must be taken to assure that it
cannot be activated through the exploitation of flaws elsewhere in the system.

1 Other technical communities define these terms differently, e.g. [5]

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 2

6. Challenges

Expanding the scope of the software building code from a focus on elimination of implementation errors
to include system security policies and secure software development processes is a significant step.
While a single organization may be able to implement and control secure software development
procedures for software it develops internally, it is difficult to find a product today that doesn’t
incorporate software developed by others, including software with roots in the community of open source
developers. Assuring that all of the software in a system was developed in accordance with a particular
secure software development process will be a significant challenge for most companies. (The
requirement for a software “bill of materials” in the draft code will at least allow the sources of software
to be identified.)

In general, there are three ways to gain confidence that a piece of software will function as specified.
First, one may have confidence in the people who built the software, for example, if they have produced
similar software in the past and it has performed well. Seeking this kind of confidence might lead one to
establish certification processes for individuals and for identifying what software was produced by
certified individuals. Second, one may have confidence in the process or methodology used to build and
test the software. This approach leads to the secure software development process requirement embraced
by the workshop consensus, and might lead to certification of software development processes and
identifying software that was produced in accordance with a particular process. A third way to assure that
software will behave as specified is by examining the software itself, the output of the software
development process. This third kind of assurance is the strongest, in the sense that it reasons about the
actual code that will operate the system, but it is difficult (often impossible) to achieve simply by testing
the code, because the state spaces involved are far too large for exhaustive testing. Techniques for
mathematical verification of software can provide this kind of assurance. This approach might call for the
certification of the tools and processes used in the verification. The size of software to which techniques
have been successfully applied continues to grow, but remains a limiting factor.

A successful approach to the development of secure power system software may well involve all three of
these kinds of assurance for the foreseeable future.

7. How might this report be used?

This report serves as an example of how a building code might be developed for software with security
responsibilities in a particular domain. In itself, it records the consensus of a group of experienced
industry, academic, and government laboratory individuals who are concerned with the security of future
power systems. If it is to be used more widely, it needs to be circulated, read, considered, revised,
amplified and perhaps eventually adopted by relevant organizations in the industry. It can also serve as a
basis for industry and government standards groups considering how to proceed to help make the
cybersecurity properties of future power systems an asset rather than a liability.

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 3

8. Acknowledgments

The authors thank all of the participants for their contributions to the workshop, which included
considerable work in advance of the meeting itself. The willingness of all of the participants to travel to
UIUC (including some from Europe and Australia), to share their views and to engage in spirited
discussion made the workshop both productive and pleasurable. This report aims to capture the consensus
of those present at the meeting. The authors are grateful to the group leaders and keynote speakers, who
had the opportunity to review draft versions of the report, and whose comments have improved it.
Responsibility for the final report, and any errors in it, remains with the authors.

Craig Preuss of the IEEE Power and Energy Society was particularly helpful in recruiting participants and
assisting the organization of the workshop, although he was unable to participate in person. The IEEE
Cybersecurity Initiative, and in particular Brian Kirk of the IEEE Computer Society, provided funds and
organizational support that were essential to the conduct of the workshop. The U.S. Department of
Energy, through its Cyber Resilient Energy Delivery Consortium (CREDC, DoE Award Number DE-
OE0000780) activities at the University of Illinois at Urbana-Champaign (and in particular Amy Clay
Moore) provided excellent facilities and logistics support. The National Science Foundation (NSF CNS-
1452113) and the Cyber Security and Privacy Research Institute (CSPRI) at George Washington
University provided additional support.

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 4

9. References
Participants also discussed and compiled a list of important interdisciplinary papers and resources in
cybersecurity. Some participants felt that those individuals wishing to do interdisciplinary cybersecurity
doctoral research should have read, or at least skimmed, most or all of these.

[1] Landwehr, C.E. A Building Code for Building Code: Putting What We Know Works to Work. In
Proc. 29th Annual Computer Security Applications Conference (ACSAC), New Orleans, Dec 2013.

[2] Workshop to Develop a Building Code and Research Agenda For Medical Device Software Security:
Final Report. Report GW-CSPRI-2015-01, January 8, 2015. Also available
at: http://www.cspri.seas.gwu.edu/s/Landwehr-Building-Code-Final-Edit-Report-3-q0jj.pdf

[3] Building Code for Medical Device Software Security. (with Thomas Haigh). IEEE Computer Society,
March, 2015. Also available at: http://cybersecurity.ieee.org/images/files/images/pdf/building-code-for-
medica-device-software-security.pdf

[4] North American Electric Reliability Corporation (NERC). Reliability Fundamentals of system
Protection: Report to the Planning Committee. NERC System Protection and Control Subcommittee.
Dec. 2010. Available at:
http://www.nerc.com/comm/PC/System%20Protection%20and%20Control%20Subcommittee%20SPCS
%20DL/Protection%20System%20Reliability%20Fundamentals_Approved_20101208.pdf

[5] Avizienis, A., Laprie, J.-C., Randell, B. and Landwehr, C. Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Trans on Dependable and Secure Computing, Vol. 1, No., 1
(Jan 2004), pp. 11-33.

[6] Zetter, Kim. “Three minutes with security expert Bruce Schneier. PC World, Sept. 28, 2001. Available
at: https://www.schneier.com/news/archives/2001/09/three_minutes_with_s.html

[7] Geer, Dan. “Complexity is the enemy. IEEE Security & Privacy Magazine, August, 2008. P. 88.
Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4753682

[8] Goldfarb , Joshua. “Complexity is the enemy of security” Security Week, Feb. 11, 2015. Available at
2015: http://www.securityweek.com/complexity-enemy-security

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 5

http://www.landwehr.org/2013-12-cl-acsac-essay-bc.pdf
http://www.landwehr.org/2015-01-landwehr-gw-cspri.pdf
http://www.landwehr.org/2015-01-landwehr-gw-cspri.pdf
http://www.cspri.seas.gwu.edu/creating-building-code-for-medical-software-security/
http://www.landwehr.org/2015-03-haigh-landwehr-ieee.pdf
http://cybersecurity.ieee.org/images/files/images/pdf/building-code-for-medica-device-software-security.pdf
http://cybersecurity.ieee.org/images/files/images/pdf/building-code-for-medica-device-software-security.pdf
http://www.landwehr.org/2004-aviz-laprie-randell.pdf
http://www.landwehr.org/2004-aviz-laprie-randell.pdf
https://www.schneier.com/news/archives/2001/09/three_minutes_with_s.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4753682

APPENDICES

Appendix A

Draft Building Code for Power System Software Security

I. Purpose

This code is intended to provide a basis for reducing the risk that power system software is vulnerable to
malicious attacks that might impede system operation or compromise the integrity or confidentiality of
data used or generated by the system. The aim in specifying a model code is not to assure that future
systems are invulnerable to any anticipated attack but to record a consensus among experts from industry,
academia, and government laboratories that represents a baseline set of requirements for the security of
software and firmware in power systems. To act in the same way as building codes for physical
structures, such a code will need to evolve over time and hence will need to find an appropriate home in a
body with a continuing existence and continuing participation by relevant groups. Procedures will need to
be established for defining terms precisely, for proposing and adopting changes, for establishing
conformance to the code, and so on. The workshop participants offer this baseline code in hope that it will
eventually lead, either through the establishment of a more formal building code structure or through
adoption in some other form by relevant bodies, to a safer and stronger cyber infrastructure for power
systems generally.

II. Elements Recommended for Inclusion, by Category

In creating the categorization below, the aim is to be comprehensive. Consequently, there are some
categories for which no proposed elements were identified or agreed upon by the participants. These
empty categories are retained to highlight unmet needs.

For each element of the code, the following subsections are provided:

a. Description: What is the meaning and purpose of this element?
b. Vulnerabilities addressed: What kinds of vulnerabilities will be reduced or eliminated if this

element is implemented properly?
c. Developer resources required: What resources will the individual or organization developing the

software/device require in order to satisfy this element?
d. Evaluator resources required: What is required for a third party to assess whether the device

satisfies this element?
e. References

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 6

Proposed elements with consensus support

A. Elements intended to avoid/detect/remove specific types of vulnerabilities at the implementation stage

1. Secure software development process with assurance against subversion along with evidence
of conformance

a. Description: Vendors must develop security-critical software within the framework of an
established methodology for secure software development. No specific methodology is required, but
relevant examples include Microsoft’s Secure Development Lifecycle (SDL) and the coding practices
developed by SAFECODE. Evidence that the delivered software was developed within the chosen
methodology must be available for review. Any third-party software incorporated into security-
critical functions must be shown to provide equivalent assurance against accidental incorporation of
vulnerabilities.

b. Vulnerabilities addressed: Methodologies of the required type aim to reduce or eliminate a wide
range of software vulnerabilities including memory safety errors, integer overflows, SQL injection,
etc.

c. Developer resources required: Developer must be able to select and implement a given
methodology, develop software in accordance with it, and also develop the evidence to demonstrate
conformance.

d. Evaluator resources required: Evaluator must be able to review the delivered software and the
conformance evidence and assess compliance.

e. References: For information on Microsoft’s Security Development Lifecycle, see
https://www.microsoft.com/en-us/sdl/ Information on the industry-wide SAFECODE intiative, is
available at https://www.safecode.org.

2. Static and dynamic code analysis (throughout development cycle)

a. Description: Apply static and dynamic code analysis techniques to expose (and remediate as
appropriate) software vulnerabilities. For developers, it is likely to be most effective to apply these
tools regularly to software as it is developed, so that errors are found, and can be fixed, as soon as
possible. The tools can be applied after the software is developed (including to software provided by
third parties) and can still provide valuable information about the presence (or absence) of classes of
errors; however it is generally acknowledged that it is significantly more costly to remediate errors
found later in the development process.

b. Vulnerabilities addressed: memory safety (buffer overflows, use-after-free errors, null pointer
dereference errors, etc.)

c. Developer resources required: access to relevant program analysis tools and programmers trained
to use them effectively.

d. Evaluator resources required: Access to the software and analysis tools in order to replicate (or

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 7

https://www.microsoft.com/en-us/sdl/
https://www.safecode.org/

not) results supplied by the vendor.

e. References: See NIST Software Assurance Metric and Tool Evaluation (SAMATE) reports,
available at: https://samate.nist.gov/index.php/SAMATE_Publications.html. For a list of source code
security analyzers, see https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html

3. Use of memory-safe/type-safe languages

a. Description: memory-safe languages can eliminate or substantially reduce the likelihood of many
classes of coding errors that have often led to exploitable vulnerabilities. These include buffer
overflows, null pointer dereferences, use-after-free errors, and references to uninitialized memory.
Rust and Go are relatively recent memory-safe languages; others include Java, F#, C#, Python, and
Haskell. Developers who select other common languages (e.g., C, C++) that don’t provide memory
safety need to provide evidence that their implementations avoid these problems.

b. Vulnerabilities addressed: memory safety errors.

c. Developer resources required: Access to compilers and tools for memory safe languages and
programmers trained in them.

d. Evaluator resources required: Ability to assure that the programming language was in fact used to
create the software (e.g., source code and a compiler).

e. References: see results reported for probability of security errors in programming contest
submissions reported in “Build It, Break It, Fix It: Contesting Secure Development.”Andrew Ruef,
Michael Hicks, James Parker, Dave Levin, Michelle L. Mazurek, and Piotr Mardziel. In Proceedings
of the ACM Conference on Computer and Communications Security (CCS), October 2016. Available
at https://arxiv.org/abs/1606.01881

4. System and component fuzz-testing

a. Description: Conventional testing generally aims to compare the results of a software
implementation against its specification by exercising the functions included in the design in both
normal and limit cases, so the test inputs are often designed to check particular cases and are not
random. Fuzz testing essentially submits random inputs to a software component or system to see if
unexpected behavior can be elicited and possibly exploited to subvert the behavior of the component
or system. Participants agreed that fuzz-testing at both the component and system level should be a
requirement of the building code, since attackers are quite likely to use it to seek paths into the
system.

b. Vulnerabilities addressed: Like other testing methodologies, fuzz-testing cannot guarantee the
absence of vulnerabilities, but its use can reveal a broad range of vulnerabilities including memory
safety problems, race conditions, and many others. If these vulnerabilities can be found and
remediated prior to deployment, they will be unavailable for exploitation by attackers.

c. Developer resources required: requires personnel who understand fuzz testing, the intricate details
of the interfaces implemented, and have the tools available to conduct it. Like any testing regime,

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 8

https://samate.nist.gov/index.php/SAMATE_Publications.html
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://arxiv.org/abs/1606.01881

requires a specification of system behavior against which the tested behavior can be compared. Fuzz
testing is random and cannot be exhaustive, and it provides more assurance as more tests are run.
Consequently, an assurance regime that depends heavily on fuzz testing will demand significant
computing resources.

d. Evaluator resources required: Requires the ability to review fuzz testing output and to judge its
comprehensiveness.

e. References: The original paper on fuzz testing: "An Empirical Study of the Reliability of UNIX
Utilities" , B.P. Miller, L. Fredriksen, B. So, Communications of the ACM 33, December 1990. Many
tools are available for fuzz testing; some depart from the completely random model and incorporate
coverage metrics or target boundary and limit cases. Microsoft has published guides on “how much”
fuzzing is appropriate as well as on types of fuzzing to be applied.

5. Stress Testing

a. Description: the aim of stress testing is to explore the behavior of a component or system when it is
operated with relatively limited resources – e.g., memory, CPU, or network communications
bandwidth may be limited in relation for a high required demand for service. These conditions can
occur in normal operation if there is high demand, but they may also be artificially induced by an
attacker mounting, for example, a denial of service attack on the system. A properly designed system
should show graceful degradation in the face of stress testing and should recover normal operation
smoothly as the stress is removed. Participants agreed that stress testing at both the component and
system level should be a requirement of the building code.

b. Vulnerabilities addressed: Like other testing methodologies, stress testing cannot assure flaws or
design weaknesses are absent, it can only reveal only reveal those that the tests exercise. Stress testing
may reveal a variety of implementation failures that occur when design parameters (e.g., maximum
table sizes or queue lengths) are reached. Stress testing should also reveal failures in recovery
mechanisms.

c. Developer resources required: Requires personnel who understand stress testing and have the tools
available to conduct it. Requires a specification of expected system behavior under high-stress
conditions and expected recovery modes when stress is removed.

d. Evaluator resources required: Requires the ability to review stress testing results and to judge the
comprehensiveness of the tests.

e. References: Textbook on performance testing generally: Liu, H.H. Software Performance and
Scalability: A Quantitative Approach. John Wiley & Sons., Inc. 2009.

6. Fault-injection testing

a. Description: fault injection testing aims to evaluate component and system behavior when faults
occur. This testing approach therefore focuses on exercising fault- and error-handling code within the
system that may be rarely invoked in operation. Faults may be injected at compile time by modifying

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 9

ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf

the source code or at run time by modifying system data or protocol messages flowing over a
network. Specifications must address the expected response to induced failures so that test results can
be evaluated. Participants agreed that this type of testing should be applied to high-fidelity
representations of operational power systems but should definitely not be conducted on live
operational systems.

b. Vulnerabilities addressed: vulnerabilities likely to be revealed through fault-injection testing are
those found in error-handling and recovery routines.

c. Developer resources required: Requires personnel conversant with fault injection testing and tools
to assist in conducting tests and evaluating results.

d. Evaluator resources required: Requires the ability to evaluate fault-injection test results and to
assess their comprehensiveness.

e. References: M.-C. Hsueh, T.K.Tsai, R. Iyer. “Fault Injection Techniques and Tools,” IEEE
Computer, April 1997, p. 75 ff.

B. Elements intended to assure proper use of cryptography

1. Accredited cryptographic algorithms and implementations

a. Description: Cryptographic algorithms that resist serious cryptanalysis are notoriously difficult to
invent and to program correctly. While different environments make different demands on
cryptography (for example, differing amounts of energy and time to devote to cryptographic
operations and different time horizons for protecting keys), developers should seek algorithms that
have received some external, open certification rather than attempt to develop their own. If for some
reason suitable algorithms are not available and invention is required (this should be a last resort),
developers should take care to get expert review prior to adopting and implementing their own
crypto- algorithms. Weaknesses in cryptography often come in the implementation of the algorithm,
key management, and surrounding protocols. Externally developed and certified implementations
should be sought; custom implementations of cryptographic components require careful vetting by
experts. In power system environments, cryptography may more often be called upon to assure the
integrity of commands from operators and data from sensors rather than to protect their secrecy.
Proper selection and implementations of algorithms for these requirements, proper use of
cryptographic software packages, and proper management of keys will be essential to assuring that
the requirements are met in practice.

b. Vulnerabilities addressed: addresses weaknesses in cryptographic algorithms, implementations,
and use.

c. Developer resources required: requires the ability to understand the cryptographic requirements of
the system, select appropriate algorithms and implementations, and to use the selected packages
correctly.

d. Evaluator resources required: Requires the ability to review and evaluate the system requirements

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 10

and the developers design, selections, and implementations.

e. References: “Use Cryptography Correctly,” in IEEE Cybersecurity Initiative: Avoiding the Top
Ten Software Security Design Flaws., p. 19. https://www.computer.org/cms/CYBSI/docs/Top-10-
Flaws.pdf

2. Secure random numbers

a. Description: Generating random numbers for use in initializing pseudorandom number generators
and cryptographic algorithms, using them correctly, and avoiding reusing them are challenging
problems. Mistakes can nullify even well-designed and implemented cryptographic mechanisms. As
advised in other work, developers should adopt established approaches that experts have vetted rather
than attempting novel solutions. Even established approaches for random number generation need to
be subjected to appropriate testing to assure their effectiveness.

b. Vulnerabilities addressed: susceptibility to cryptanalytic attacks on integrity and confidentiality
that exploit poor selection of keys and other numbers intended to be random.

c. Developer resources required: Requires access to vetted procedures for random number
generation; these may be platform-dependent. Requires testing the procedures and documenting the
results.

d. Evaluator resources required: Ability to review and evaluate developer’s design and
implementation of random number generation and use, as well as reviewing test results.

e. References: “Use Cryptography Correctly,” in IEEE Cybersecurity Initiative: Avoiding the Top
Ten Software Security Design Flaws., p. 19. https://www.computer.org/cms/CYBSI/docs/Top-10-
Flaws.pdf

C. Elements intended to assure software/firmware provenance and integrity, but not to remove code flaws

1. Software Bill of Materials

a. Description: Originally posed as “layered, traceable assurance and verification,” the participants
felt that it was too difficult to formulate as a checkable building code element, but agreed that a bill of
materials, specifying what software (including version or release number) is included in a system and
the source of all of the software components in the system is both critical and checkable.

b. Vulnerabilities addressed: This element does not prevent vulnerabilities but permits identifying
whether vulnerabilities discovered in software components are included in the system and hence may
require patching/remediation. In this way it can be a critical tool for system defenders, but also for
attackers, if they have access to it.

c. Developer resources required: Ability to determine and specify where each line of code in the
delivered product originated

d. Evaluator resources required: Ability to map provided bill of materials against delivered software

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 11

https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf

components.

e. References: "H.R.5793 - 113th Congress (2013-2014): Cyber Supply Chain Management and
Transparency Act of 2014 - Congress.gov - Library of Congress". Available at
https://www.congress.gov/bill/113th-congress/house-bill/5793

2. Digitally signed software and firmware with update validation

a. Description: Both firmware and software that implement critical functions should be digitally
signed, and the private signing keys must be carefully managed. The developer must either identify
and distinguish critical vs. non-critical functions, or else the signatures must apply to all software and
firmware. Files containing critical system configuration data will also benefit from these controls.

b. Vulnerabilities addressed: This element does not prevent or eliminate vulnerabilities in software or
firmware but aids in addressing software provenance (see Software Bill of Materials as well) and
accountability in case of failures or attacks. Reduces vulnerability to spoofed updates or rollbacks.

c. Developer resources required: infrastructure to generate, distribute, update and protect signing
keys; ability to integrate signing and validation functions in delivered system.

d. Evaluator resources required: Evaluator needs to assure the integrity of signing mechanisms and
operational mechanisms for signature verification.

e. References: Arbaugh, William A., David J. Farber, and Jonathan M. Smith. "A secure and reliable
bootstrap architecture." Proc., 1997 IEEE Symp. on Security and Privacy. IEEE, 1997.

Nilsson, Dennis K., Lei Sun, and Tatsuo Nakajima. "A framework for self-verification of firmware
updates over the air in vehicle ECUs." Proc. 2008 IEEE Globecom Workshops. IEEE, 2008.

Cui, Ang, Michael Costello, and Salvatore J. Stolfo. "When Firmware Modifications Attack: A Case
Study of Embedded Exploitation." Proc. 20th Network and Distributed Systems Symp. (NDSS) 2013,
Internet Society, San Diego, CA, Feb. 2013.

D. Elements intended to impede attacker analysis or exploitation but not necessarily remove flaws

1. Specification of system information flows with effective enforcement

a. Description: While the confidentiality of information in power systems is a concern, the integrity
and flow of information, particularly control information sent to and received from cyberphysical
systems, is usually the most critical concern. The developer must specify the flow of critical
information through software and hardware components and make use of software and hardware
mechanisms, including mandatory access controls (MAC), rings of protection, privilege mechanisms,
capability mechanisms, one-way flow devices, etc., as available and appropriate. This broad
requirement concerns both system security policy and system architecture.

b. Vulnerabilities addressed: Enforcement of information flow constraints does not necessarily

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 12

eliminate implementation errors that could be exploited by maliciously crafted inputs, but it can limit
the effects to the domains “downstream” from the exploitable flaw.

c. Developer resources required: Ability to understand and architect information flows within the
system and to employ available mechanisms to enforce them.

d. Evaluator resources required: Ability to understand and assess both system function and
developer’s information flow specification and implementation.

e. References: See French ANSSI
http://www.ssi.gouv.fr/uploads/2014/01/Managing_Cybe_for_ICS_EN.pdf , esp. Appendix B, GP02,
and US DHS https://ics-cert.us-
cert.gov/sites/default/files/documents/Seven%20Steps%20to%20Effectively%20Defend%20Industria
l%20Control%20Systems_S508C.pdf, item 4, for examples of related guidance.

2. Input Validation: All input accepted by control software must be well-defined (via a grammar or
equivalent means), as syntactically simple as possible (regular or context-free syntax preferred), and
fully validated before use.

a. Description: Demonstrating the effectiveness of input validation, i.e., demonstrating that invalid
inputs can be identified and are in fact rejected, was agreed to belong in the code. Simplification of
inputs, which can reduce the difficulty of validation, was considered desirable but did not gain
consensus as a code requirement.

b. Vulnerabilities addressed: Exploitation of input-handling code by maliciously crafted input.
Accepting invalid inputs can lead to unpredictable system behavior. Input validation can protect
against buffer overflows and related memory safety errors.

c. Developer resources required: Requires that for each possible system input, the range of
acceptable inputs be unambiguously specified and that the implementation assure inputs are validated
as specified.

d. Evaluator resources required: Ability to review both the input specification and the code
responsible for validating inputs.

e. References: "Security Applications of Formal Language Theory", Len Sassaman, Meredith L.
Patterson, Sergey Bratus, Michael E. Locasto, IEEE Systems Journal, Volume 7, Issue 3, Sept. 2013,
see also http://langsec.org/papers/langsec-tr.pdf)

3. Appropriate component separation / isolation

a. Description: Providing isolation between components so that malfunction or penetration of one
component cannot affect those isolated from it is a fundamental software and security engineering
technique. In power systems, it is appropriately used to separate non-critical functions from critical
ones, which implies that the critical functions have been explicitly identified. Mechanisms for
achieving the separation can include hardware support for isolating machine domains (e.g., privilege
modes, rings, segmentation, capabilities). Software sandboxing mechanisms can also be effective but

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 13

http://www.ssi.gouv.fr/uploads/2014/01/Managing_Cybe_for_ICS_EN.pdf
https://ics-cert.us-cert.gov/sites/default/files/documents/Seven%20Steps%20to%20Effectively%20Defend%20Industrial%20Control%20Systems_S508C.pdf
https://ics-cert.us-cert.gov/sites/default/files/documents/Seven%20Steps%20to%20Effectively%20Defend%20Industrial%20Control%20Systems_S508C.pdf
https://ics-cert.us-cert.gov/sites/default/files/documents/Seven%20Steps%20to%20Effectively%20Defend%20Industrial%20Control%20Systems_S508C.pdf
http://langsec.org/papers/langsec-tr.pdf

may require additional evidence to assure their strength.

b. Vulnerabilities addressed: this element does not remove specific classes of vulnerabilities but
prevents or raises the difficulty for an attacker who exploits a vulnerability in one component to
leverage that exploitation in other components.

c. Developer resources required: ability to distinguish more critical from less critical
functions/components; ability to organize security architecture to exploit underlying security isolation
mechanisms (processes, sandboxes, virtual machines), ability to map the design to the underlying
separation mechanisms correctly.

d. Evaluator resources required: Access to relevant design and implementation documents from
developer and ability to interpret and evaluate them correctly.

e. References: C. Greamo and A. Ghosh, "Sandboxing and Virtualization: Modern Tools for
Combating Malware," in IEEE Security & Privacy, vol. 9, no. 2, pp. 79-82, March-April 2011.

4. Authentication and access control (human – device and device – device)

a. Description: Authentication of human operators to machines is critical to providing accountability
for operator-initiated actions and a basis for implementing role based (or other) access controls. As
automation and attack sophistication increase, it will become more important for the machine to
authenticate itself to the operator as well (i.e., so that the operator can be sure she is communicating
with the intended machine and that its configuration is accurately portrayed). A complicating factor
may be the need for emergency access by human operators. In addition, devices will require mutual
authentication, for similar reasons. Some current standards for substation operation already impose
authentication requirements. The consensus was that the code should require two-factor
authentication of operators, but at the same time should provide for audited “break-glass” emergency
access for critical functions. Device-device authentication was seen as important, but requiring further
research prior to imposing a building code requirement.

b. Vulnerabilities addressed: This element does not generally detect or remove vulnerabilities in
software or hardware, but it provides accountability for actions taken and provides the basis for
authorizing system access. Authenticated communications can enable detection of traffic inserted by
unauthorized third parties.

c. Developer resources required: Ability to design and incorporate appropriate authentication
mechanisms, including two-factor authentication.

d. Evaluator resources required: Ability to evaluate authentication mechanism design and
implementation.

e. References: IEEE Std. 1686-2007 for Intelligent Electronic Devices. IEEE Std. 1815 (DNP3) also
describes a machine-to-machine authentication process.

E. Elements intended to enable detection/attribution of attack

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 14

1. Security event logging

a. Description: Provide a tamper-resistant audit trail for security-related events, such as software
installation, user authentication, and attempted intrusion. The audit trail must not be overwritten by a
flood of events; and there shall be a provision for offline storage. It was noted that certain kinds of
power fluctuations might themselves be indicators of security-relevant events, but such fluctuations
are expected to be captured by the power monitoring systems and hence did not require inclusion in
this element.

b. Vulnerabilities addressed: This element does not prevent or detect vulnerabilities, it aims to
provide a record that would permit reconstruction and understanding of adverse activities after the
fact and may assist in restoring the system to a valid state. If software monitoring a log can detect a
malfunction or attack based on the logged actions, it may be able to initiate recovery actions or inhibit
further damage.

c. Developer resources required: Requires identification of security related event types (for example,
authentications, privilege level changes, and software updates) including intrusion attempts, and
implementation of tamper-resistant, append-only security event logs.

d. Evaluator resources required: Requires manual review of identified security related event types
and of design and implementation of logging mechanisms and security event generation mechanisms.

e. References: IEC 61850, IEEE 1815 (DNP3), IEEE 1686 already call for related functions.

F. Elements intended to assist in safe degradation of function during an attack

No elements proposed specific to this category, but see “back-out” functionality element.

G. Elements intended to assist in restoration of function after attack

1. Inherent “back-out” functionality // trustworthy recovery

a. Description: provide mechanisms that support restoration to secure functional state after a
successful attack has been detected. Providing this capability can affect the system design broadly.

b. Vulnerabilities addressed: This element does not prevent or eliminate vulnerabilities but aims to
restore system function after a vulnerability has been exploited.

c. Developer resources required: Requires the developer anticipate potentially successful attack
modes and provide recovery mechanisms (e.g. backups inaccessible to attackers) that can be invoked
when system degradation is detected.

d. Evaluator resources required: Ability to assess adequacy of developer’s design and recovery
mechanisms.

e. References: Gallagher, P. A Guide to Understanding Trusted Recovery in Trusted Systems.. NCSC-
TG-022. U.S. National Computer Security Center, Dec., 1991. Available at:
https://fas.org/irp/nsa/rainbow/tg022.htm

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 15

H. Elements intended to support maintenance of operational software without loss of integrity

No elements proposed specific to this category. However, it is related to software/firmware update
validation under the previous element “Digitally signed software and firmware with update
validation”

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 16

Appendix B

Research Agenda for Power Systems Software Security

Input Simplification: some participants proposed that inputs should be required to be simplified to
improve the assurance that inputs can be mechanically validated. For example, “Protocols with
complex message formats such as DNP3, IEC 61850, etc. must be restricted by their recognizer
modules to subsets actually used by specific devices and valid for these devices. Non-conforming
inputs should be rejected.” The consensus was not to include this requirement in the initial code
because protocol implementations may be licensed from third parties and hence difficult to modify.
Research may be warranted into techniques for simplifying input language complexity and for
wrapping existing implementations so that (potential) flaws in third party implementations cannot be
exploited.

Verified OS and hardware. Some participants proposed to require the use of verified operating
system and hardware platforms for critical devices. Some low power/low function devices do not
include operating systems, so if such a requirement were included in a future code, the scope of its
application would need to be made clear. Verfication would enable assuring that system initialization
leads to a secure initial state. Critical properties desired of a binary (or source) program would need
to be specified precisely. The subject program is then analyzed against a model embodying the
semantics of the (hardware/software) execution environment to verify that the desired properties are
present. The participants recognized there have been substantial advances in tools that can be applied
to carry out formal verification of software and that some substantial software systems, including the
seL4 kernel, have been verified. The technology is seen as cost-effective and is in use by chip vendors
to verify hardware designs. The relative simplicity of some power system components would seem to
bring them within reach of the technology. However, on balance, the participants felt that there was
more research to be done before this element could be placed into the code.

Automated conformance checking. This proposed element is meant to cover mechanisms to check
whether a software program conforms to the building code. Tools (some more automated, like SAT
solvers, and some requiring more manual assistance, like theorem provers) are, and have been for
some time, available for this purpose. This element is closely related to the proposed “Verified OS
and hardware” element, except that the proposed conformance is to the building code rather than to a
functional specification, and a similar discussion applies.

Formal requirements specification. At least three senses of formal requirements specification were
discussed during the meeting. For those pursuing formal verification of programs, a formal (in the
sense of mathematical logic) specification of the desired properties of the program is required. The
difficulty of creating such a specification is an impediment to the development of verified OS and
hardware, just discussed, and suggested that incorporating a building code element for a formal
specification is premature at this time. The participants also discussed formal security policy models,
in the sense of the Trusted Computer System Evaluation Criteria, and endorsed the idea that without
such a model, particularly one addressing mandatory integrity requirements, it is essentially

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 17

impossible to specify when a security violation has occurred. On the other hand, “formal” used in the
sense of having a form, a structure, leads to a different interpretation of “formal requirements
specification”. It was noted that IEEE Standard 1686 for Intelligent Electronic Devices provides a
framework for cybersecurity requirements for such devices. The consensus placed this proposed
element on the research agenda.

Active defense and automated response. This proposed element aims to automate the current
activities of attack detection and response. As such, it aims to reduce vulnerabilities only as
mitigations to observed attacks. Some current activities such as the DARPA Cyber Grand Challenge
have incentivized this approach, but the participants felt that the technology is not mature enough to
include in a building code at this time.

Assurance cases with eliminative arguments. Analysts who use this technique try to increase the
confidence in a security assertion by posing counter-examples and then presenting evidence that
eliminates as many counter-examples as possible. When a counter-example cannot be eliminated
completely, the evidence can provide bounds on the potential impact of the counter-example. While
assurance cases have been used successfully in the safety domain, their development for use in the
security domain is less mature. The strength of any eliminative argument depends on the
completeness of the set of posited counter-examples. No work has been done to identify security-
related counter-examples specifically for power system devices.

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 18

Appendix C

Call for Participation, including Workshop Proposal

Call for Contributions and Participation
IEEE Invitational Workshop to Create a Building-Code for building code

for Power System Software Security: (BC)2 Power
November 16-18, 2016

University of Illinois at Urbana-Champaign

Purpose

The aim of this workshop is (1) to establish an initial consensus among industry and academic
participants on the appropriate components of a “building code” that would be appropriate to reduce
significantly the vulnerability of cyber components of electric grids to malicious attacks, and (2) to
establish a research agenda for the creation of evidence that could justify the inclusion of additional
elements in such a code. The workshop will be held under the auspices of the IEEE Cybersecurity
Initiative, IEEE Smart Grid, and IEEE Power and Energy Society, with participation from UIUC’s
Information Trust Institute; additional support is being sought from the NSF Secure and Trustworthy
Cyberspace program.

The workshop proposal describing the scope, objectives, and the building code metaphor is included as an
appendix to this call for contributions and participation.

What might a building code for power system software/firmware security look like?

Building codes applied to physical structures generally grow out of industry and professional society
groups – suppliers, builders and architects – rather than from government, although adoption of codes by
government provides a legal basis for enforcement. Building codes generally apply to designs, building
processes, and the finished product. Code enforcement relies on inspections of structures during
construction and of the finished product and also on certification of the skills of the participants in the
design, construction, and inspection processes. Codes also take account of different domains of use of
structures: code requirements for single-family dwellings differ from those for public buildings, for
example.

Following the ideas expressed in [1] we aim to develop an analog to these processes that will improve
assurance that software developed for the domain of medical devices will be free of many of the security
vulnerabilities that plague software generally. Evidence to date is that a large fraction of exploitable
security flaws are not design flaws but rather implementation flaws. An initial building code for power
system device software/firmware security could focus on assuring that the final software that operates the
device is free of these kinds of flaws, although it could address aspects of the development process as
well. For example, the code might specify that modules written in a language that permits buffer

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 19

http://cybersecurity.ieee.org/
http://cybersecurity.ieee.org/
http://smartgrid.ieee.org/
http://www.ieee-pes.org/
https://www.iti.illinois.edu/
https://www.iti.illinois.edu/

overflows be subject to particular inspection or testing requirements, while modules written in type-safe
languages might require a lesser degree of testing but a stronger inspection of components that translate
the source language to executable form.

Considerations for Including a Particular Requirement in a Building Code for Power Systems
Software Security

1 The first criterion should be the ability of the required item to reduce the vulnerability of software
to exploitation. Specific evidence should be available to support claims of effectiveness.

2 Ease of evaluation. Requirements that are effective but require unusual expertise, time, or other
resources to evaluate are not appropriate for inclusion in the code.

3 Requirements affecting only a narrow scope of vulnerabilities may not be appropriate to
incorporate.

4
For an example of such a building code, targeted at medical device software security, see:

https://www.computer.org/cms/CYBSI/docs/BCMDSS.pdf.

Participants Sought

To succeed, the workshop needs participation from (1) industry personnel familiar with the architecture
and tools used to build power system devices and the software that controls them, (2) people familiar with
the history of power system device regulation in general and people familiar with the history of computer
security regulation, (3) researchers and practitioners familiar with cybersecurity issues generally and with
security issues in power system software in particular, and (4) experts in relevant aspects of software
engineering, including requirements, design, and (especially) implementation, test, and
validation/verification methods.

Workshop Organization and Products

The meeting will be organized as two-day event with approximately 40 invited participants, starting in the
evening of the first day (Nov. 16) and ending in the afternoon two days later (Nov 18). The meeting will
open with a dinner session accompanied by an invited talk or panel on the history and current state of
official guidance on the security of power system software. The next day will open with a general talk on
the concept of a building code for security-critical software that will address the types of requirements a
building code might include and the possible basis for deciding whether a particular element should be
included in the code. Following this introduction, a series of short talks proposing possible elements of
the code will be presented, based on submissions received in advance of the meeting.

In afternoon breakout sessions, the participants will be asked to discuss the proposed elements and to
assess the strength of the evidence for including each proposed item in the code. When the group
consensus is that stronger evidence is needed, research topics that might help establish that evidentiary
basis will be identified. At the end of the afternoon, groups will report on their progress in a brief plenary
session.

The breakout sessions will reconvene on the final morning of the workshop to consider the results of the
plenary session and any evening discussions. The meeting will close with a two-hour plenary session in

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 20

https://www.computer.org/cms/CYBSI/docs/BCMDSS.pdf

which consensus on an initial building code and research agenda will be sought.

Following the meeting, the Chair and Vice-Chair, in consultation with the workshop participants and
Steering Committee will develop a report on the workshop documenting the initial draft building code
and research agenda. The report will be placed on IEEE Cybersecurity’s website and will be published by
the IEEE as well, similar the Building Code for Medical Device Software Security document.

Where to send your contribution/request for invitation

If you are interested in participating, please send a note of not more than 600 words explaining (A) which
of the four groups listed above you would represent and (B) at least one requirement you think would be
appropriate to discuss at the workshop as a candidate for an initial building code, as well as evidence
supporting the effectiveness of that requirement. If you are interested in the workshop but don’t have a
specific element to propose, please include a description of your role in power system software
development or in assuring software security. Submit this information to:

http://goo.gl/forms/ysWg3JwJZyEd0Is13 no later than September 14, 2016.

Travel Support

Support for those requiring reimbursement of travel, lodging, and meal expenses is expected to be
available from the workshop sponsors.

Reference

1 Landwehr, C. E. “A Building Code for Building Code: Putting What We Know Works to Work,”
Proc. 29th Annual Computer Security Applications Conference (ACSAC), New Orleans LA.,
ACM, NY, pp.139-147.

2
Appendix to the Call for Participation (Workshop Proposal)

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 21

https://www.computer.org/cms/CYBSI/docs/BCMDSS.pdf
http://goo.gl/forms/ysWg3JwJZyEd0Is13

Workshop Proposal

A Building Code for Building Code for

Power System Software Security: (BC)2 Power

Introduction

Based on a recent essay by Landwehr [L13], the cybersecurity community has undertaken a number of
initiatives exploring the metaphor of structural building codes as a guiding framework for building secure
codes in critical systems. Under the auspices of the IEEE Cybersecurity Initiative [IEEE] and the National
Science Foundation, a workshop was held in November 2014 to describe such a framework for medical
devices [MDSSA, MDSSB]. The purpose of this document is to propose a workshop to explore the
building code metaphor in the domain of electric power systems.

Modern infrastructure systems, such as those in electric power grids, are rapidly evolving into cyber-
physical systems (CPS) in which distributed cyber assets for monitoring, communication, and control
interface with a physical process for safe and efficient operation. In the power sector, assets include
embedded systems in devices located at substations, poletops, or on customer premises (for example,
smart meters) as well as more conventional server and workstation platforms hosting data historians and
human-machine interfaces (HMI). This proliferation of assets exposes a growing and poorly understood
attack surface, with potential attacks ranging from theft of service to massive, protracted outages. Since
all other critical infrastructures and indeed the smooth function of modern society depend on electric
power, the effect of a long-term, wide-area outage could be destabilizing on a historically unprecedented
scale.

Workshop Objectives

The proposed workshop seeks to define the building code framework for software systems in electric
power, from HMI to embedded systems firmware in field devices. The workshop will enumerate elements
of such a code, and identify tools, processes, and methodologies that support these elements. This in turn
will define adoption strategies and identify outstanding gaps to be addressed by the research and
academic communities. The eventual goal is an adaptable structure to guide code implementation,
addressing the following points as well as other aspects identified by workshop participants:

• Approaches to avoid and remove security flaws at design and implementation
• Choice of development environment, language, and libraries
• Tools for static and dynamic code analysis
• Evaluation of the finished product
• Certification
• Resilience, defined as safe operation or “soft landing” in case of attack or adverse event
• Built-in features to support attack detection, attribution, and forensics

Intended Audience

We invite participation from diverse stakeholders with an interest in secure software in the power sector.

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 22

This includes the academic and research community, but it is essential to enlist participation from power
system equipment vendors (responsible for HMI software and device firmware), asset owners, security
consultants, and policy specialists. This diversity is essential to ensure that the workshop product reflects
the interests of all involved, and to maximize the probability that the framework will be adopted.

Document Organization

Subsequent sections of this document provide initial background discussion addressing workshop
objectives, although we anticipate that the workshop will significantly change this understanding. We first
sketch out the building code metaphor in the power system context, and enumerate a candidate list of
elements of the building code. Next, we position our effort in relation to initiatives from NIST and the
Security Development Lifecycle [SDL06, MSSDL], as well as the earlier work by members of the team in
the medical device domain. We conclude with an overview of the particular challenges that arise applying
this approach to the power system domain.

Building Code as Metaphor

The workshop aims to develop an analog to structural building codes focused on security properties of
software. The objective of the code is to increase assurance that developed software will be free of many
software vulnerabilities typically present in software developed according to current practices. Evidence
suggests that exploitable security flaws arise from implementation rather than design flaws. The
underlying motivation for creating this building code for the security of power system software and
firmware is to provide a basis that developers can use to rule out the most commonly exploited classes of
software vulnerabilities, as well as to build in mechanisms for recovery and attribution. To accomplish
this, the code elements must be effective and relatively easy to adopt and evaluate.

Elements of a Building Code for Code

We enumerate candidate elements of (BC)2 Power by analogy to elements of structural building codes,
given in the table below.

Analogs Between Structural Building Codes and Building Codes for Code

(adapted and extended from [L13])

Structural Building Code (BC)2 Power

Structural integrity against hazards such as
wind, lightning, rain, earthquake

Structural integrity of isolation and other
mechanisms to resist tampering and other attacks

Fire safety: prevent, detect, isolate, safe exit
“Fireproof” materials in the form of coding
standards, mechanisms to detect, isolate (domain
separation), and recover

Physical safety of occupants: door and stairway Security mechanisms that are easy to use and

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 23

dimensions, handrails understand

Water and energy Efficient and secure information flows

Security certified materials, components, and
subassemblies

Secure development environments, languages,
libraries, and modules

Inspection Code review, static analysis

Stress test: Bring pipes to pressure, foundation
bolts pull-out test

Dynamic analysis, fuzz testing. Design embedded
systems sufficiently robust to enable scanning and
fuzz testing

Certification Certification, signed software

Complementary Initiatives

Security Development Lifecycle

The Security Development Lifecycle [SDL06, MSSDL] outlines a sequence of practices to be followed
from the security requirements phase through design, implementation, verification, release, and (incident)
response. Analysis and, to the degree possible, reduction of the attack surface is a theme that recurs in
various phases. SDL calls for threat modeling, which may guide adoption of elements in our building
code, but may not be part of the building code itself.

The building code elements enumerated in this document in areas such as secure development
environments, static and dynamic analysis, and fuzz testing map directly to counterparts in SDL,
particularly in the implementation and verification phases.

NIST

The NIST framework [NIST14] provides a risk-based approach to managing cybersecurity risk, but is
more oriented to the enterprise user rather than the developer. It outlines a tiered approach whereby an
organization examines components of cybersecurity risk and undertakes measures to address it. The
framework specifies functions to identify, protect, detect, respond, and recover. We may envision that
building codes in the sense we propose support some of these functions. For example, an implementation
of the NIST framework may legitimately claim that the identified risk is lower for software that is
certified as having been built according to codes such as we propose than for software claimed to be
functionally equivalent but without the certification. The objectives of the NIST framework and the
building codes initiative are different in that the NIST framework addresses business process and risk
management, while the building codes approach identifies practices, tools, and procedures to implement
secure software.

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 24

Medical Device Software Security

Some of the organizers of the workshop proposed here have applied he building code concept in a
workshop addressing software security in medical devices [MDSSA, MDSSB]. The workshop report
includes an appendix that identifies code elements, grouped as follows:

• Elements intended to remove/avoid flaws at design
• Elements intended to avoid/detect/remove vulnerabilities at implementation
• Elements intended to assure software/firmware provenance and integrity
• Elements intended to impede attacker analysis or exploitation
• Elements to enable detection and attack attribution

We note that the latter three categories above do not remove or avoid vulnerabilities, but promote
resiliency in the presence of vulnerabilities that persist in the developed software.

The workshop identified element categories for safe degradation, restoration, and maintenance without
loss of integrity. No specific elements were proposed in these categories.

Challenges and opportunities in the power sector

The following are some of the specific challenges to security in the power grid domain. The list is not
intended to be exhaustive.

Long component life

Power systems are characterized by a mixed ecosystem of legacy and modern components. The useful life
of a component with respect to its power function is typically much longer than the firmware refresh
cycle. Legacy components cannot support modern security measures, and today’s newly installed device
will be “legacy” from the cyber standpoint through most of its useful life in the field. The building code
must recognize this, and anticipate requirements for secure firmware upgrades and interoperability in
mixed legacy environments.

Computational, communication, and power constraints

Power system devices must react to adverse conditions that arise suddenly (a tree falling across a power
line) so as to maintain system safety, minimize outage, and protect difficult-to-replace equipment. Legacy
devices achieve these objectives through thermal or electro-mechanical means with no or minimal
programmable logic or inter-device communication. Modern protection schemes require rapid intra-
device and distributed communication to respond intelligently to adverse conditions. It must be the case
that the building code does not impede these requirements, especially considering the fact that field
devices may be limited in computational and communication resources.

Security perimeter: Substation, poletop, customer premise

Intelligence in smart grids is increasingly distributed and migrating to the grid edge (both physically and
logically). Substations now include a variety of devices such as transformers, bus bars, and intelligent
relays and breakers. More and more intelligence is moving to the field, in the form of devices such as
poletop reclosers. This trend extends all the way to the customer premise in the form of smart meters.

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 25

While one may argue for physical security of substation equipment within a fenced perimeter, we must
assume that there is no meaningful physical security perimeter beyond rudimentary tamper detection on
field and customer-premise equipment.

3rd party connections

Among other goals, smart grid is intended to enable the integration of renewable resources as well as new
energy markets. Renewable resources may interface to utility grids at large scales (wind farms) or
distribution scale (microgrids, customer-premise solar). Smart grid also enables third-party markets such
as aggregation and home energy management. In all these cases, utilities must ensure the integrity of
physical and financial transactions across interfaces with systems over which they have no administrative
control.

References

[IEEE] http://cybersecurity.ieee.org/

[L13] Landwehr, C. E. “A Building Code for Building Code: Putting What We Know Works to Work,” Proc.
29th Annual Computer Security Applications Conference (ACSAC), New Orleans LA, ACM, NY, pp.139-
147. Available at: http://www.landwehr.org/2013-12-cl-acsac-essay-bc.pdf

[MDSSA] Workshop to Develop a Building Code and Research Agenda For Medical Device Software
Security: Final Report. Report GW-CSPRI-2015-01, January 8, 2015:

http://www.landwehr.org/2015-01-landwehr-gw-cspri.pdf

[MDSSB] Landwehr, C.E., and Haigh, T. “Building Code for Medical Device Software Security”, IEEE
Computer Society, March 2015. http://cybersecurity.ieee.org/images/files/images/pdf/building-code-
for-medica-device-software-security.pdf

[MSSDL] Microsoft Security Development Lifecycle,

http://www.microsoft.com/en-us/sdl/default.aspx

[NIST14] National Institute of Standards and Technology. Framework for Improving Critical
Infrastructure Cybersecurity, version 1.0, Feb. 12, 2014.

http://www.nist.gov/cyberframework/upload/cybersecurity-framework-021214.pdf

[SDL06] Michael Howard and Steve Lipner. “The Security Development Lifecycle: SDL: A Process for
Developing Demonstrably More Secure Software (Developer Best Practices)”

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 26

http://cybersecurity.ieee.org/
http://www.landwehr.org/2013-12-cl-acsac-essay-bc.pdf
https://urldefense.proofpoint.com/v2/url?u=http-3A__www.landwehr.org_2015-2D01-2Dlandwehr-2Dgw-2Dcspri.pdf&d=BQMFaQ&c=8hUWFZcy2Z-Za5rBPlktOQ&r=64GMvox8l4OdRyfjK9lDB5iJk9WH6UZJEtUf2GNubx8&m=SR-ZRVEJJdd2d8tqKNgkp8nz594fuz2__EMeeuGTlYg&s=C9Ise703gIh9bs9qmY-A_JSrgQhP5cCA7CGdI5zke9c&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__cybersecurity.ieee.org_images_files_images_pdf_building-2Dcode-2Dfor-2Dmedica-2Ddevice-2Dsoftware-2Dsecurity.pdf&d=BQMFaQ&c=8hUWFZcy2Z-Za5rBPlktOQ&r=64GMvox8l4OdRyfjK9lDB5iJk9WH6UZJEtUf2GNubx8&m=SR-ZRVEJJdd2d8tqKNgkp8nz594fuz2__EMeeuGTlYg&s=ohUylGdpCTutKXqYmYTfylwbODWoYPjwkrnU9mb82e4&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__cybersecurity.ieee.org_images_files_images_pdf_building-2Dcode-2Dfor-2Dmedica-2Ddevice-2Dsoftware-2Dsecurity.pdf&d=BQMFaQ&c=8hUWFZcy2Z-Za5rBPlktOQ&r=64GMvox8l4OdRyfjK9lDB5iJk9WH6UZJEtUf2GNubx8&m=SR-ZRVEJJdd2d8tqKNgkp8nz594fuz2__EMeeuGTlYg&s=ohUylGdpCTutKXqYmYTfylwbODWoYPjwkrnU9mb82e4&e=
http://www.microsoft.com/en-us/sdl/default.aspx
http://www.nist.gov/cyberframework/upload/cybersecurity-framework-021214.pdf

Appendix D

IEEE Invitational Workshop to Create a Building-Code for <building code> for Power System
Software Security: (BC)2 Power

November 16-18, 2016

University of Illinois at Urbana-Champaign

Final Agenda

 Time Event Location

 Wed. 11/16,

 5:30 pm

 Arrival All workshop
participants

 Hampton Inn

 6:00 pm Registration / Pre-dinner reception All workshop
participants

 Bahl Meeting Room

 3002 Electrical and Computer
Engineering Building

 306 N. Wright St.

 Urbana, IL 61801-2918

 7:00 pm Dinner All workshop
participants

 8:00 pm Talk 1: History of software security
and approaches to marketplace

 Speaker: Andrew
West, SCADA
Consultant

 8:45 pm Talk 2: History of software security
and approaches to regulation

 Speaker: Roger
Schell, Aesec

 same as above

 9:30 pm Adjourn

 Thurs. 11/17

 7:00am Continental Breakfast available All participants

 8:00 am Introduction of the participants and
outline of the workshop

 Bill Sanders,
David Nicol, Carl
Landwehr, Al
Valdes

 8:45 am Proposed building code element
talks

 Category A items

 10:00 am Morning Break

 10:30 am Talks continue Category B, C, D,
etc. items

 12:00 noon Lunch

 1:00 pm Breakout groups convene Please check your
name badge for
your group
assignment

 Breakout rooms:

 Group 1 (Pink): RM 3034

 Group 2 (Red): RM 3036

 Group 3 (Yellow): RM 4036

 Group 4(Green): RM 5034

 Group 5(Orange): RM 5086

 3:00 pm Afternoon Break

 3:15 pm Breakouts continue

 4:00 Breakouts conclude

 4:10 pm Plenary presentations / discussion Breakout group
leads report on
conclusions, new
proposals

 5:10 pm Discussion period if needed

 5:30 pm Adjourn

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 28

 Group leads / steering Coordination
meeting

 6:30 pm Reception

 7:30 pm Dinner

 Fri. 11/18

 7:30 am Continental Breakfast available

 8:30 am Plenary Report on
consensus from
group leads
meeting, charge for
morning breakouts

 9:00 am Breakouts re-convene Breakout rooms:

 Group 1 (Pink): RM 3034

 Group 2 (Red): RM 3036

 Group 3 (Yellow): RM 4036

 Group 4(Green): RM 5034

 Group 5(Orange): RM 5086

 10:00 am Morning break

 10:30 am Breakouts re-convene

 11:20 Breakouts conclude

 11:30 am Closing plenary

 12:30 pm Box lunches and departure

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 29

Appendix E – List of Participants

IEEE Invitational Workshop to Create a Building-Code for <building code> for Power System
Software Security: (BC)2 Power

November 16-18, 2016

University of Illinois at Urbana-Champaign

Note: Organizational affiliations are shown for information only. The workshop results and report do not
necessarily represent the views of these organizations.

Kaibin Bao, Karlsruhe Institute of Technology (KASTEL)
Ian Bryant, Trustworthy Software Foundation
Chris Chelmecki, Basler Electric, Discussion Group Leader
Art Conklin, University of Houston
Adam Crain, Automatak
Dennis Gammel, Schweitzer
Andrew Ginter, Waterfall-Security
Mark Heckman, University of San Diego
Marijn Heule, University of Texas -- Austin
Carl Landwehr, George Washington University (CSPRI)
Chad Lloyd, Schneider Electric
Dario Lobozzo, Radiflow
Johan Malmström, ABB
Scott Mix, North American Electric Reliability Corporation (NERC)
Ken Modeste, UL, Discussion Group Leader
Tommy Morris, University of Alabama -- Huntsville
David Nicol, University of Illinois at Urbana-Champaign
Rajesh Nighot, Nebulian
Michael Pyle, Schneider Electric
Edwards Reed, AESec, Inc.
Craig Rieger, Idaho National Laboratory
Benjamin Salazar, Lawrence Livermore National Laboratory
Chet Sandberg, Consulting Engineer
William Sanders, University of Illinois at Urbana-Champaign
Roger Schell, AESec, Inc., Keynote address
Steven Templeton, University of California -- Davis
Eric Thibodeau, Gentec
Mike Thiems, Basler Electric
Alfonso Valdes, University of Illinois at Urbana-Champaign
Zhenyuan Wang, ABB, Discussion Group Leader
Sam Weber, New York University
Jin Wei, University of Akron
Andrew West, SUBNET Solutions, Inc., Keynote address and Discussion Group Leader
Chuck Weinstock, Software Engineering Institute (CMU), Discussion Group Leader
Reid Wightman, RevICS
Carol Woody, Software Engineering Institute (CMU)
Tim Yardley, University of Illinois at Urbana-Champaign

Workshop to Develop a Building Code and Research Agenda for Power System Software Security: Final Report 30

	9. References
	APPENDICES
	Appendix A
	Appendix B
	Appendix C

