Adversarial Machine Learning and Wireless Security for 5G and Beyond

Yalin Sagduyu and Tugba Erpek Intelligent Automation, Inc.

Who are we?

■ i-a-i.com/research-and-development/

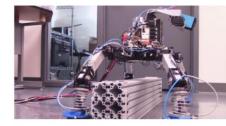
Home Page

Products & Services in ¥ f Research & Development Careers About Us Contact Us

Research & Development

AI & Advanced Computing

Deployable analytics, machine learning, and applied AI solutions



Autonomy & Robotics

More >

More >

Cutting-edge robotic platforms, autonomy, and humanmachine interfaces

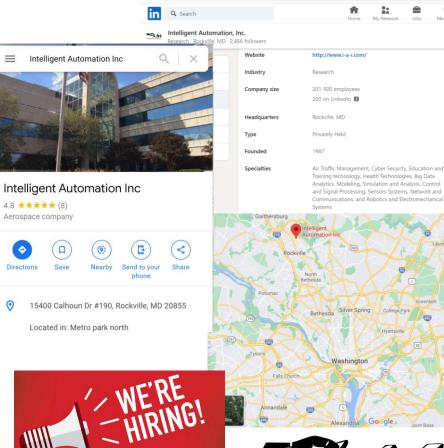
Modeling, Simulation & Visualization Data fusion and analysis visualized in AR/VR experiences

More >

Networks & Cyber Security Advanced solutions to detect, assess, and mitigate threats

Radar, Communications & Sensors RF systems, networks, and algorithms designed for a contested spectrum

Healthcare Research Technologies Data collection and analysis in non-clinical settings



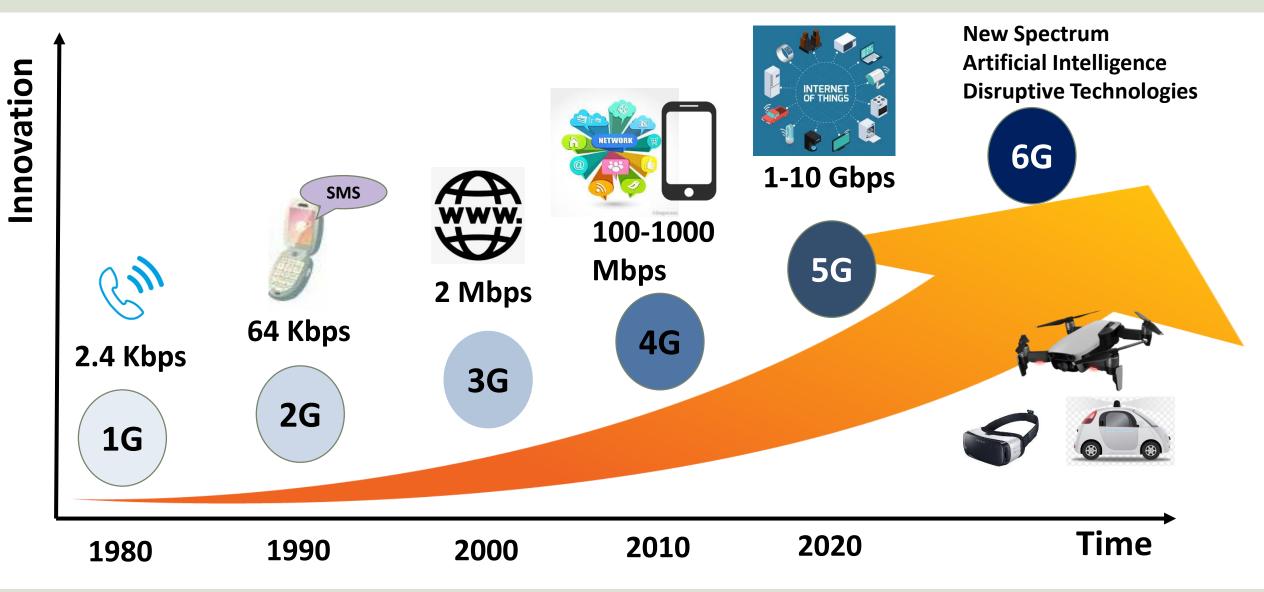
ail - Yalin Sagduyu - Outle 🗴 🛛 📉 Virtual Backgrounds - yaline 🗴 🛛 🔟 9 Luxury Real Estate Backgre 🗴 🛛 🤑 (23) | Microsoft Teams 🛛 🖲 🗴

<u>_</u>

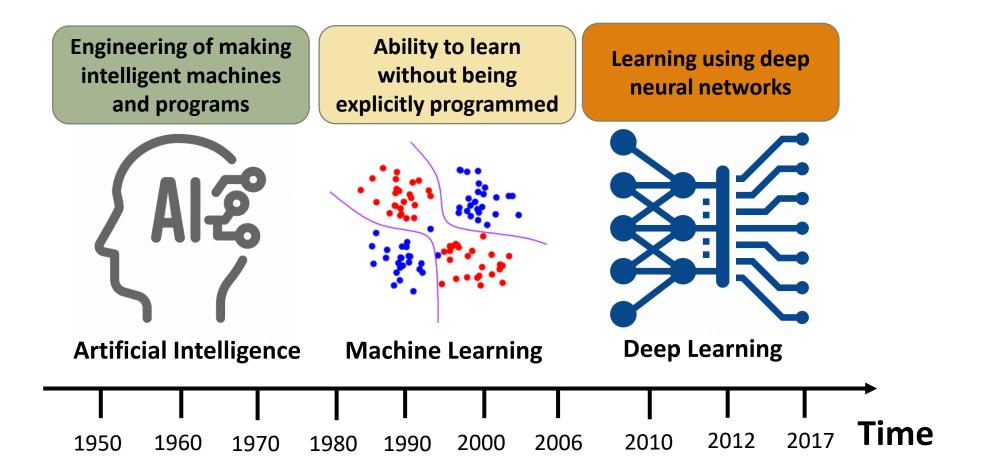
Jobs

C linkedin.com/company/intelligent-automation-inc/about/

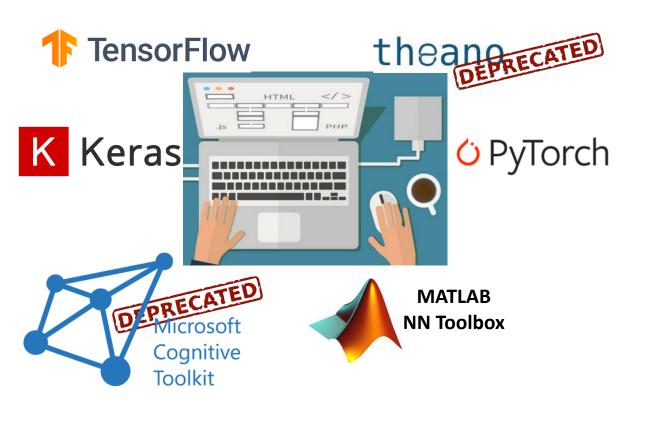
Wireless Evolution



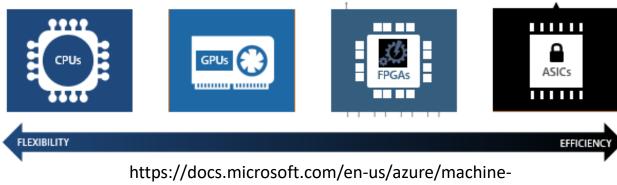
Machine Learning Evolution



Machine Learning Software Tools & Datasets



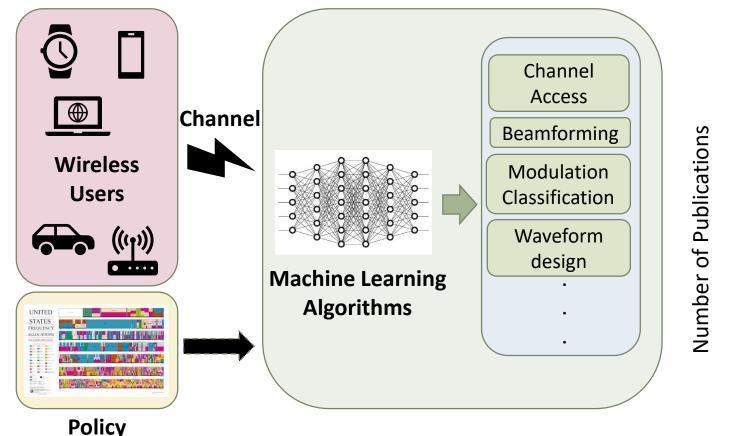
Machine Learning Computational Tools



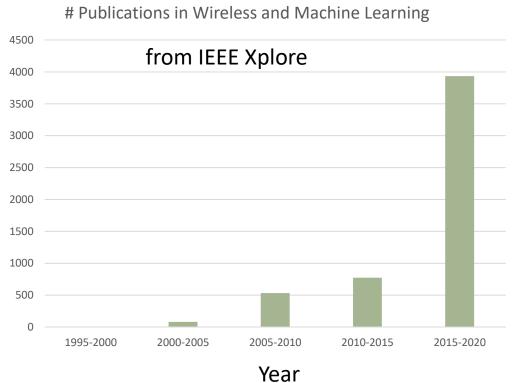
learning/how-to-deploy-fpga-web-service



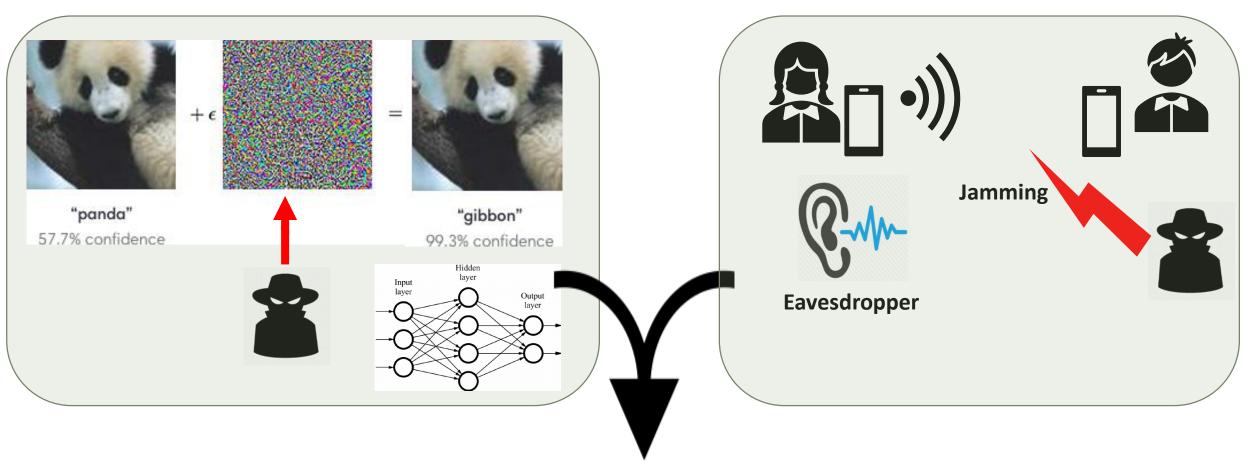
Machine Learning for Wireless



Increasing interest in wireless communications and machine learning research



Machine Learning/Wireless Security



Adversarial Machine Learning for Wireless

Outline

Machine Learning

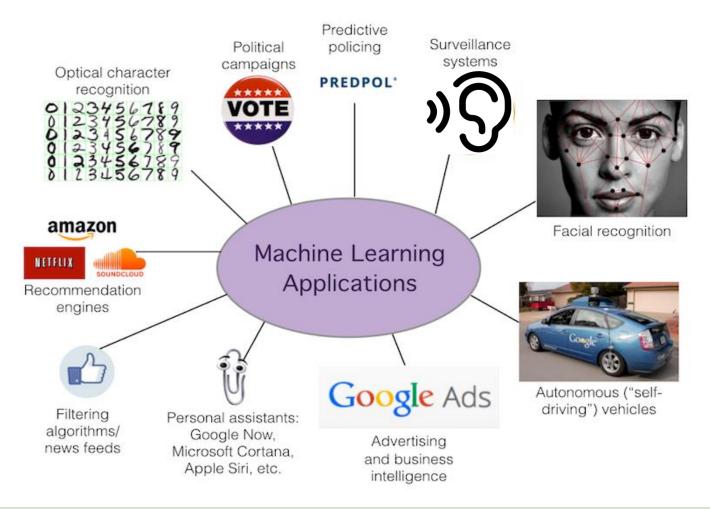
- Machine Learning for Wireless
- Machine Learning for 5G and Beyond
- Adversarial Machine Learning
- Adversarial Machine Learning for Wireless
- Adversarial Machine Learning for 5G and Beyond
 Conclusion

Machine Learning - 1

• Automated means to learn from data and solve (complex) tasks.

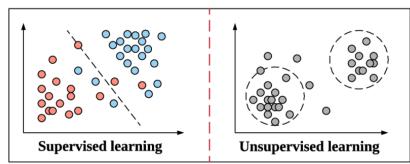
• Far-reaching applications:

- Document classification
- Search engines
- Social media/network platforms
- Intelligence analysis applications
- Intrusion detection
- Bot detection
- Recommender systems
- Online review systems
- Spam email filtering
- Internet of Things
- Cyberphysical systems
- Autonomous driving
- Unmanned vehicle controllers

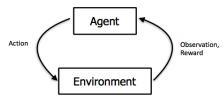


Machine Learning - 2

- Supervised Learning
 - Labeled data
 - *Example*: Classification
- Unsupervised Learning
 - No labeled data
 - Example: Feature extraction



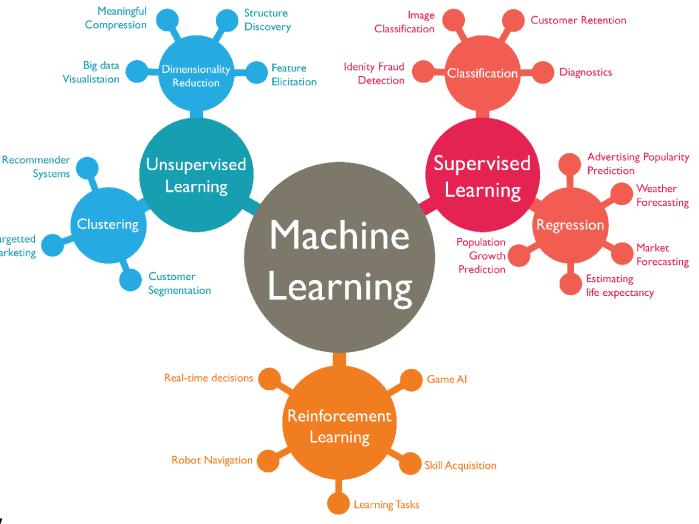
Reinforcement Learning ۲



• *Example*: Model-less learning on the fly

Targetted

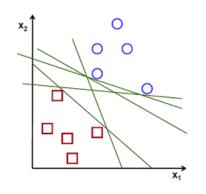
Marketing



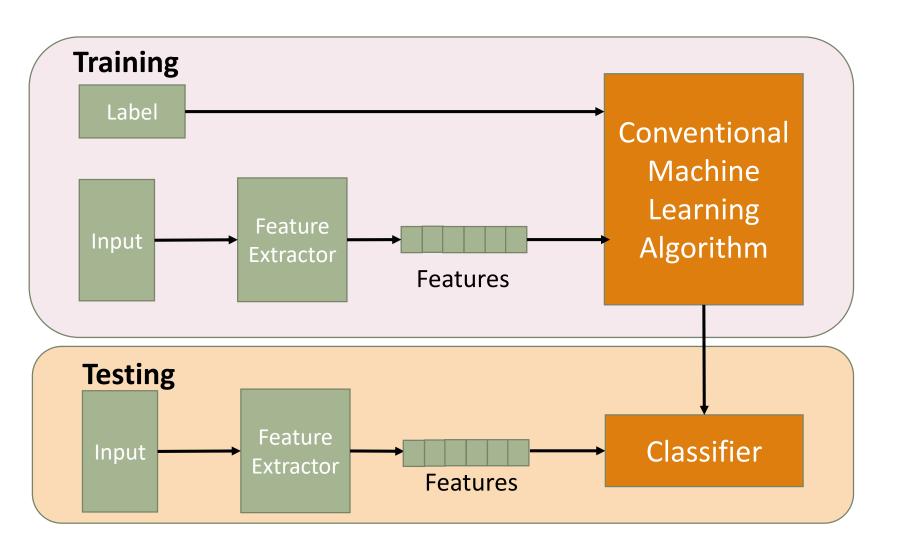
https://www.linkedin.com/pulse/business-intelligence-its-relationship-big-data-geekstyle

Conventional Machine Learning Algorithms

 Support Vector Machine (SVM)

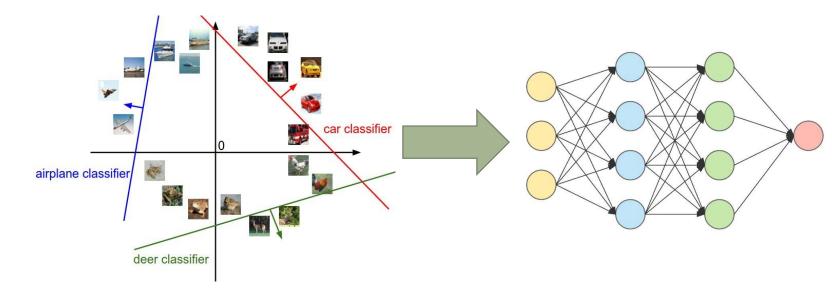


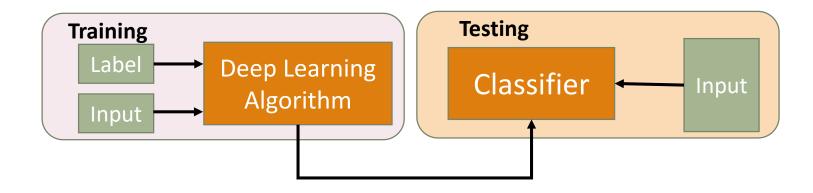
- Decision Trees
- Random Forests among others.



From Machine Learning to Deep Learning

- Deep neural networks
 - Algorithmic advances (e.g., back-propagation)
 - **Computational** advances (e.g., cloud back-ends)
 - Expansion of **training data** (e.g., sensors).
 - Open-source software (e.g., TensorFlow).
- Can effectively solve complex tasks.



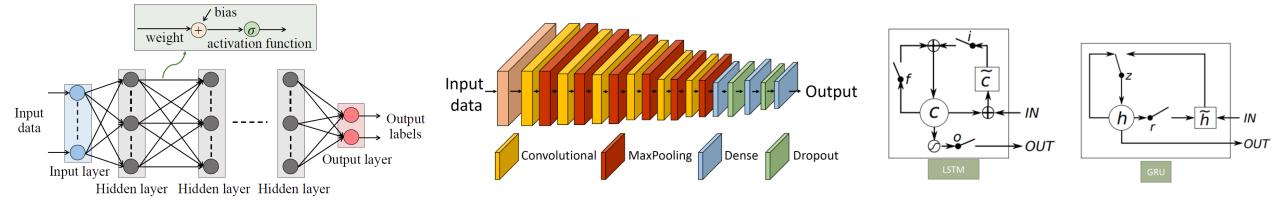


Common Types of Deep Neural Networks

Feedforward neural network (FNN)

Convolutional Neural Network (CNN)

Recurrent Neural Network (RNN)



- captures spatial correlations in data
- example: computer vision

- captures temporal correlations in data
- example: computer vision

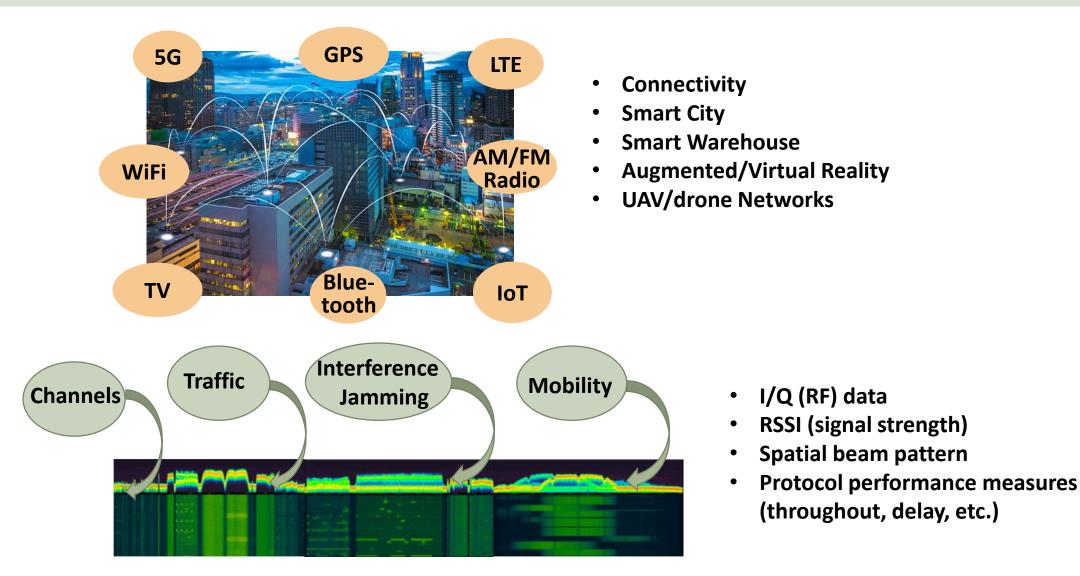
Outline

Machine Learning

Machine Learning for Wireless

- Machine Learning for 5G and Beyond
- Adversarial Machine Learning
- Adversarial Machine Learning for Wireless
- Adversarial Machine Learning for 5G and Beyond
 Conclusion

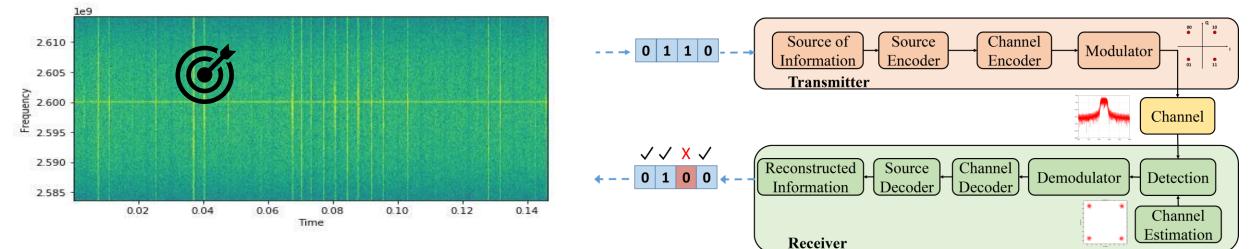
Wireless (Spectrum) Data is Complex



Wireless Tasks are Complex

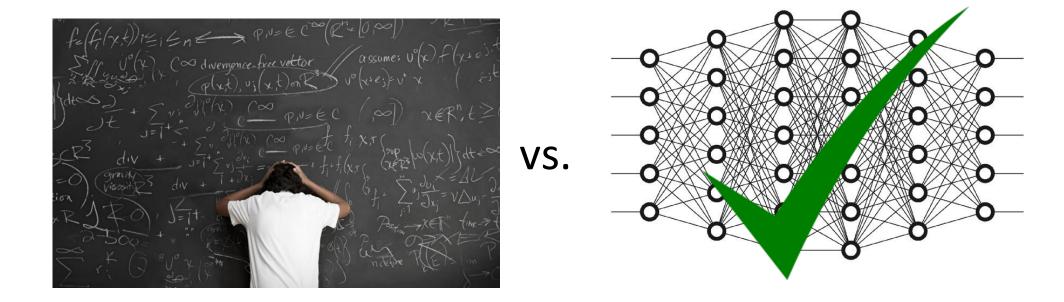
Signal Analysis

Waveform/Protocol Design



Machine/Deep Learning for Wireless

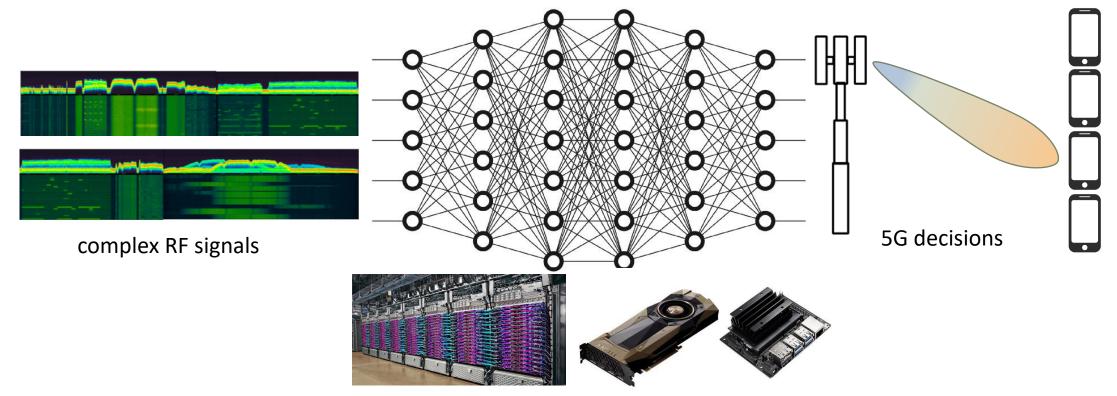
 Expert knowledge & analytical solutions cannot capture complex waveforms, channels, and resources of wireless.



Machine/deep learning provides automated means to learn from spectrum data and solve complex spectrum tasks.

From Conventional ML to Deep Learning

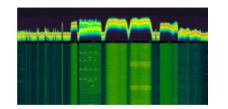
- Conventional ML techniques fall short from capturing complex spectrum dynamics.
- Deep learning finds rich applications in wireless domain.



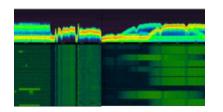
from high performance to embedded computing

Deep Learning for Wireless

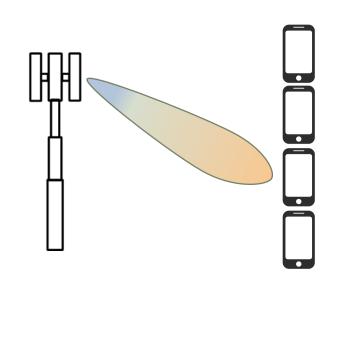
Signal Detection/ Classification



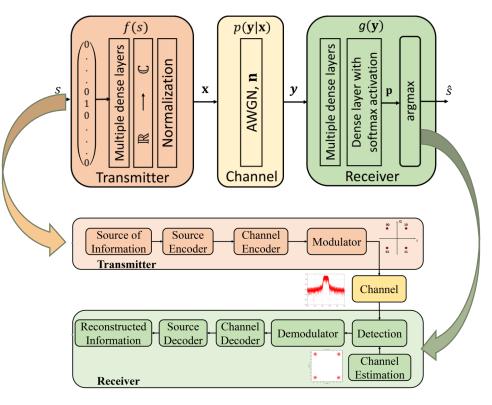
versus



Waveform/Protocol Optimization



Deep Neural Networks Communication System

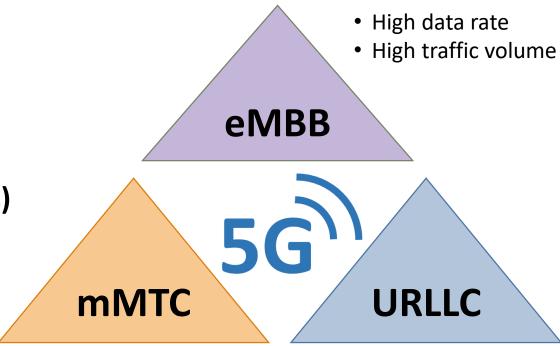


Outline

- Machine Learning
- Machine Learning for Wireless
- Machine Learning for 5G and Beyond
- Adversarial Machine Learning
- Adversarial Machine Learning for Wireless
- Adversarial Machine Learning for 5G and Beyond
 Conclusion

5G as a Complex Ecosystem

- Enhanced Mobile Broadband (eMBB)
 - Virtual/Augmented Reality
 - Mobile Office
 - Entertainment
- Massive Machine Type Communications (mMTC)
 - Smart Cities
 - Manufacturing
 - Supply Chain/Logistics
- Ultra Reliable Low Latency Communications (URLLC)
 - Autonomous Vehicles
 - Emergency Services
 - Healthcare

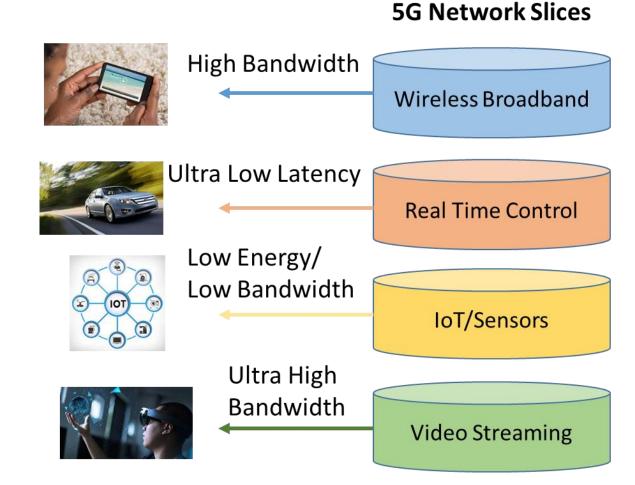


- Massive number of lowcost devices
- Low energy consumption

- Low latency
- High reliability

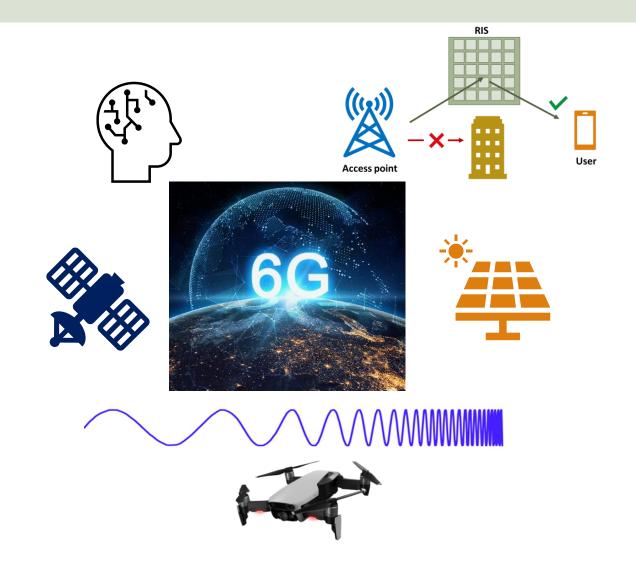
Advanced Capabilities Offered by 5G

- From sub-6GHz to mmWave
- Massive MIMO
- Multiple services on shared physical infrastructure through network slicing
- Low-latency edge computing
- Improved energy efficiency



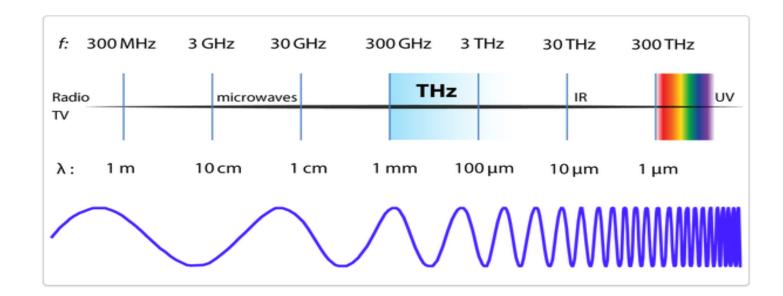
Beyond 5G

- x100 throughput of 5G
- Distributed edge cloud
- Distributed data and AI
- Federated and dynamic learning
- Ultra high frequency spectrum
- Reconfigurable intelligent surfaces
- Volumetric spectrum efficiency
- Software-defined network and access
- Energy transfer and harvesting
- Integrated terrestrial, airborne and satellite networks
- Hologram communications



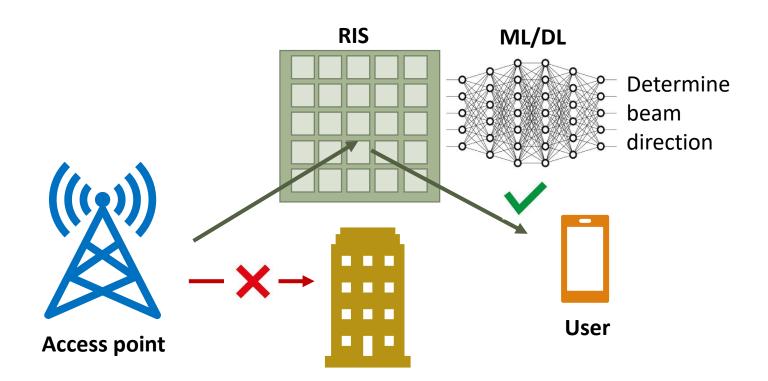
Terahertz Communications

- THz provides unprecedented rates not supported in 5G and before.
 - Highly-directional and secure transmissions.
 - Ultra-low latency (e.g., Augmented reality/virtual reality).
- Challenge: Link maintenance and support of high mobility.
- ML/DL for fast beam training, beam switching and handoff.

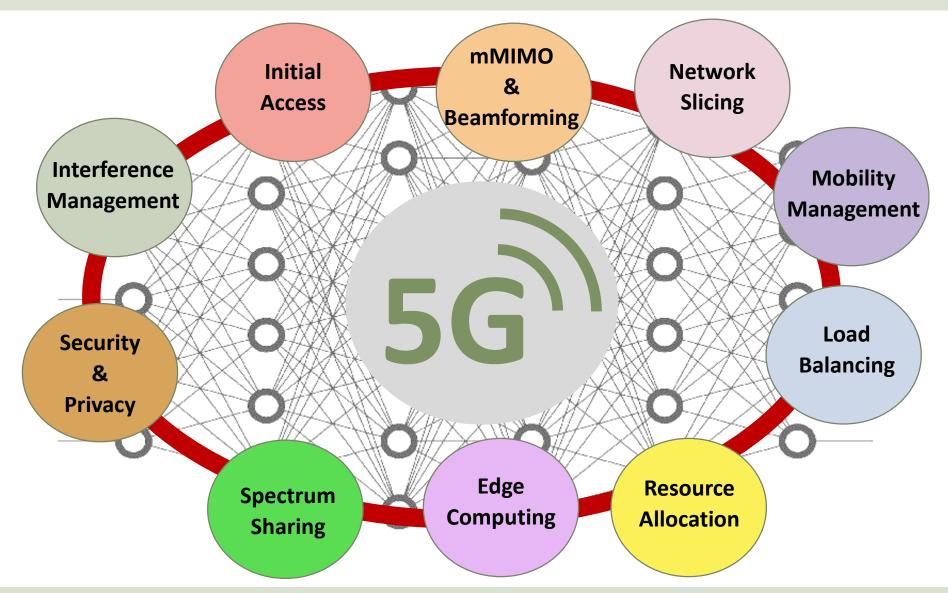


Reconfigurable Intelligent Surfaces (RISs)

- Reflect and focus the signals towards the receivers.
- Enhance coverage in mmWave & THz systems in face of blockages.



Machine Learning for 5G and Beyond

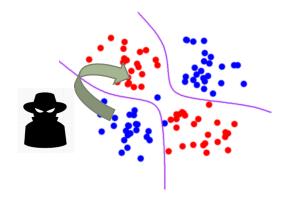


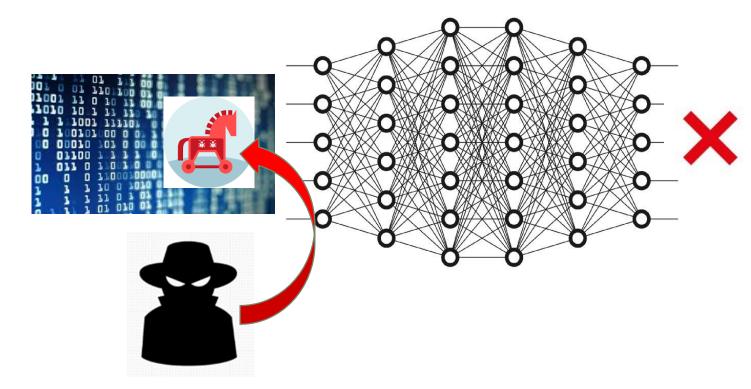
Outline

- Machine Learning
- Machine Learning for Wireless
- Machine Learning for 5G and Beyond
- Adversarial Machine Learning
- Adversarial Machine Learning for Wireless
- Adversarial Machine Learning for 5G and Beyond
 Conclusion

Security Vulnerabilities of Machine Learning

- Tamper with the learning process and fool deep learning algorithms into making errors.
- Complex decision space of deep learning is sensitive to small adversarial inputs.

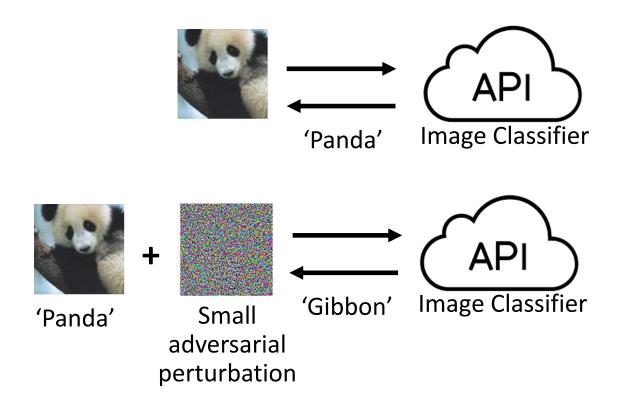




Deep learning itself is vulnerable to attacks.

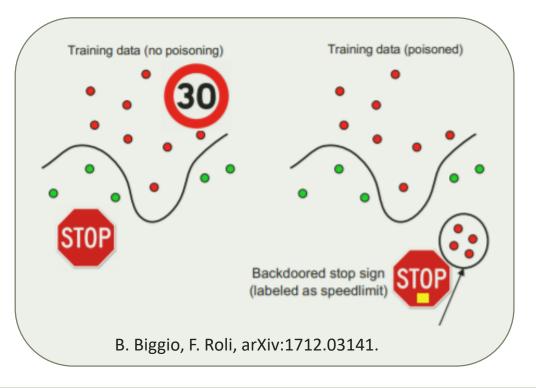
Adversarial Machine Learning Example

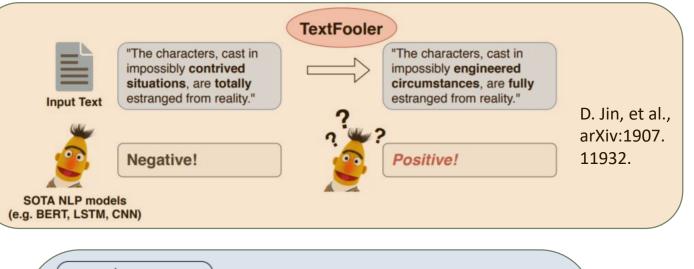
- How effective learning can take place under the presence of an adversary?
- Canonical example of adversarial (evasion) attacks from computer vision:

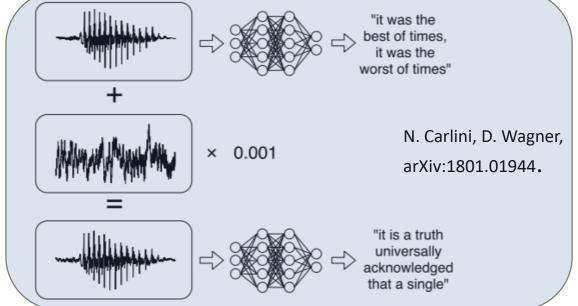


Applications of Adversarial ML

- Autonomous driving
- Text classification
- Voice applications





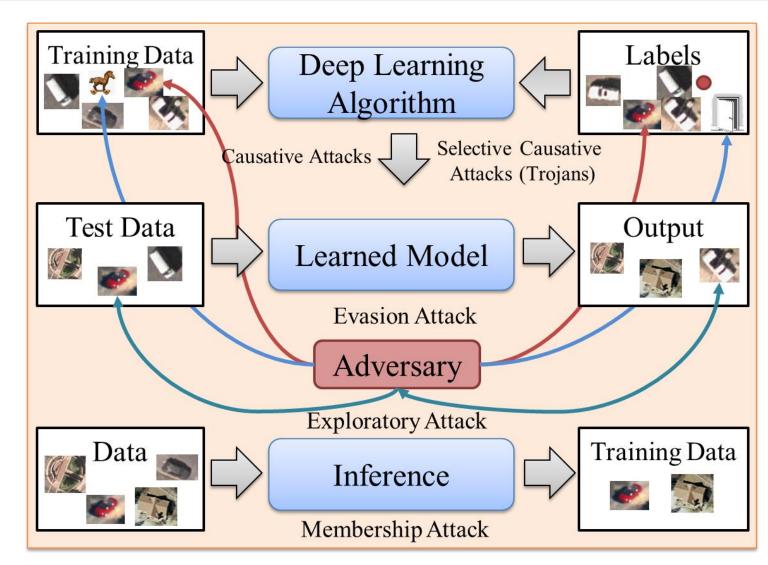


Yalin Sagduyu & Tugba Erpek

Adversarial Machine Learning Taxonomy

1. Exploratory attacks

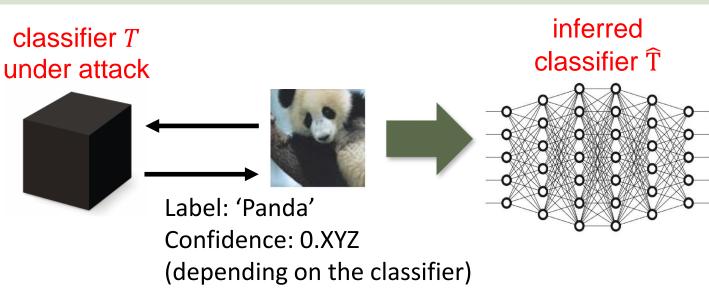
- Uncover information about ML
- 2. Adversarial (evasion) attacks
 - Manipulate test data for ML
- 3. Causative (poisoning) attacks
 - Manipulate training data for ML
- 4. Trojan (backdoor) attacks
 - Poison training data with triggers that are activated in test time
- 5. Privacy attacks
 - Model inversion attacks
 - Membership inference attacks
 - Attribute inference attacks



1 – Exploratory (Inference) Attacks

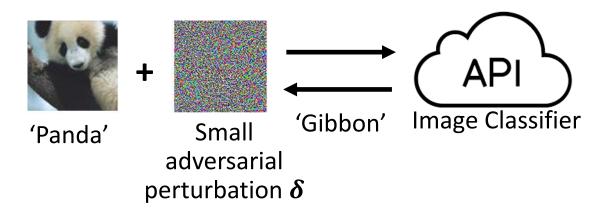
Attack steps:

- 1. Query the classifier
- 2. Collect returned labels
- 3. Use 1-2 to train a **surrogate** machine/deep learning model.



- "Stealing" the machine learning algorithm poses a risk to the intellectual property.
- Once a classifier is stolen, the adversary is free to analyze it (with an unlimited number of queries) to identify its potential **weaknesses** and its **underlying functionality**.

2 – Adversarial (Evasion) Attacks

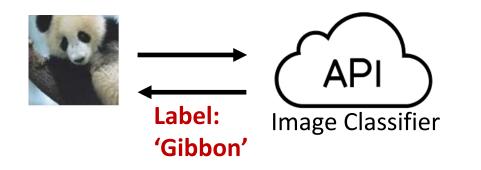


- Attack in **test time**.
- Adversary's Goal : Select perturbation ${oldsymbol \delta}$

(i) maximize the error probability of label data is classified as label $j \neq i$ (ii) subject to upper bound on δ

• Outcome: The data samples will be misclassified.

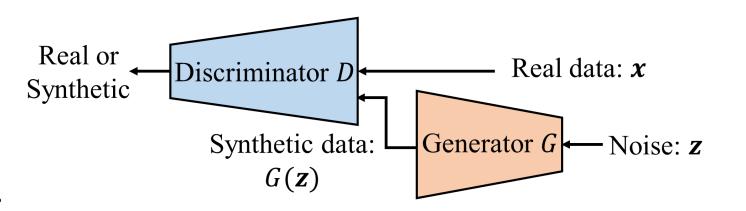
3 – Causative (Poisoning) Attacks



- Attack in training (or retraining) time.
 - Data needs to gathered from different (potentially adversarial) parties.
- Adversary's Goal: Select training data whose labels will be modified.
- **Outcome**: The (re)trained model will be poor in accuracy.

Generative Adversarial Learning (GAN)

- Adversarial learning as a generative process (not an attack per se).
- A Generative Adversarial Network (GAN) consists of two neural networks.
 - Generator network: Generate synthetic data.
 - **Discriminator network**: Discriminate between the real and synthetic data.
 - A game is played between the generator and the discriminator.
- Augment training data (when training data is limited).
- Adapt test or training data to other domains (for which there is limited or no training data).

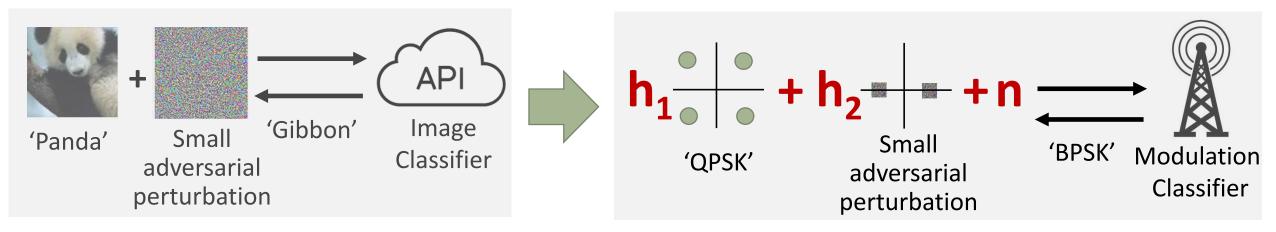


Outline

- Machine Learning
- Machine Learning for Wireless
- Machine Learning for 5G and Beyond
- Adversarial Machine Learning
- Adversarial Machine Learning for Wireless
- Adversarial Machine Learning for 5G and Beyond
 Conclusion

Adversarial Machine Learning in Wireless

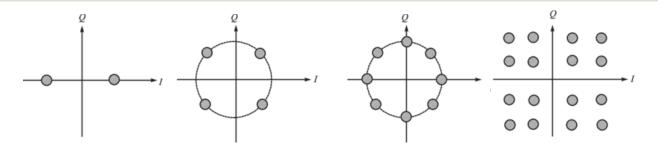
- Wireless medium is open and shared.
 - Adversary can eavesdrop the channel.
 - Adversary can manipulate the channel by jamming or physically blocking the signal.
- Unique characteristics due to channel, interference, traffic, and spectrum sharing.



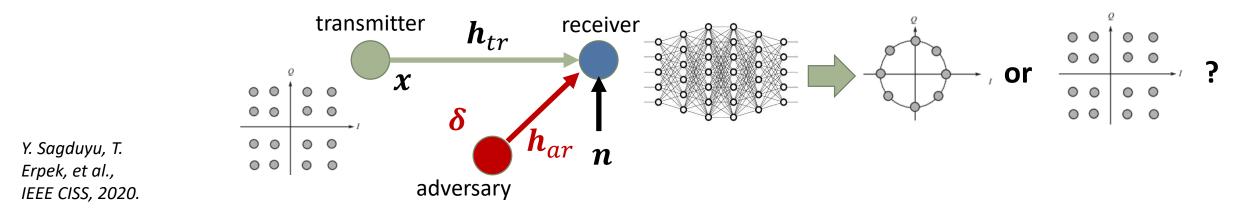
- Different data samples (features and labels) at the target system and at the adversary.
- No direct manipulation of the input to a target machine learning algorithm.

Adversarial Attack on Wireless Signal Classifier

- A transmitter transmits signal *x* with a particular choice of **modulation**.
 - BPSK, QPSK, 8PSK, 16QAM, ...



- A receiver classifies its received signal $y = h_{tr} x + n$.
 - Feature: y , i.e., I/Q data
 - Label *L*(*y*) : BPSK, QPSK, 8PSK, 16-QAM, ...
- If an adversary transmits perturbation δ , the receiver classifies $y' = h_{tr} x + h_{ar} \delta + n$.



Yalin Sagduyu & Tugba Erpek

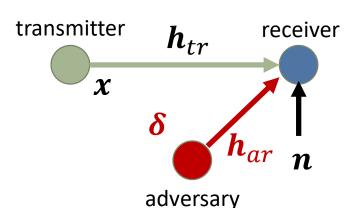
Adversarial Attack on Wireless Signal Classifier

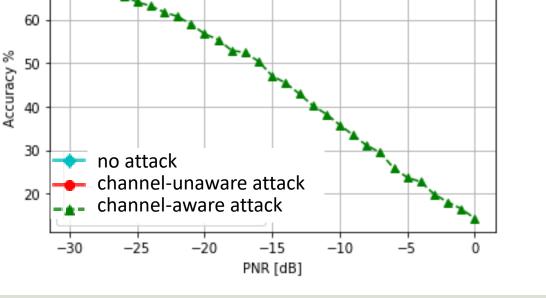
• Adversary selects δ

70

to minimize $\|\delta\|_2$ subject to $L(h_{tr} x + h_{ar}\delta + n) \neq L(h_{tr} x + n)$ $\|\delta\|_2^2 \leq P_{max}$

- Attack without considering h_{ar} is ineffective.
- Classifier accuracy significantly drops when the perturbation δ is selected by considering h_{ar} .
- Classifier accuracy decreases as the perturbation-to-noise-ratio (PNR) increases.

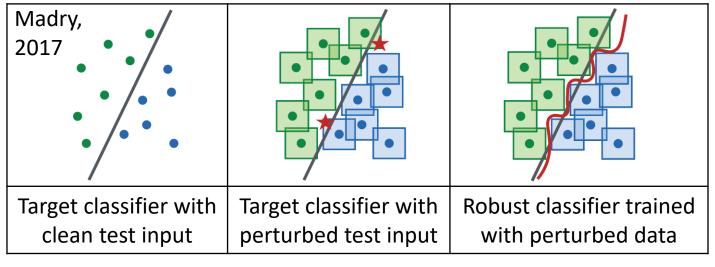


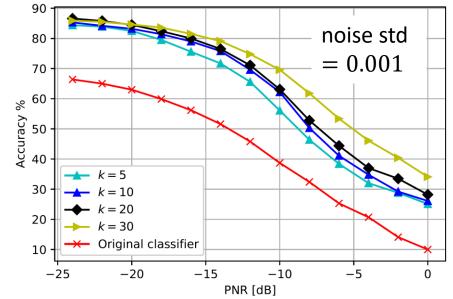


Defense - 1

- Randomized smoothing during training.
- To every training sample y_i, add k small Gaussian noise samples
- Classifier is trained with the augmented training data set: $y_i \rightarrow \{y_i + n_{i,1}, y_i + n_{i,2}, \cdots, y_i + n_{i,k}\}$
- Classifier becomes **robust** against adversarial inputs in test time.

Y. Sagduyu, T. Erpek, et al., https://arxiv.org/abs/2005.05321

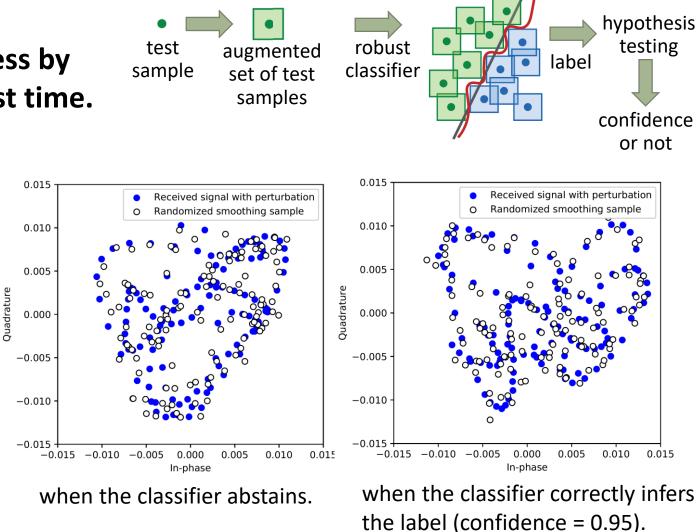




Defense -2

- Certified defense in test time.
 - Guarantee the classifier's robustness by using randomized smoothing in test time.
- For every test sample y_i, add k small Gaussian noise samples and label of them with the classifier.
- Apply two-sided hypothesis test with the classifier outputs to check statistical significance for a desired confidence.

Y. Sagduyu, T. Erpek, et al., https://arxiv.org/abs/2005.05321



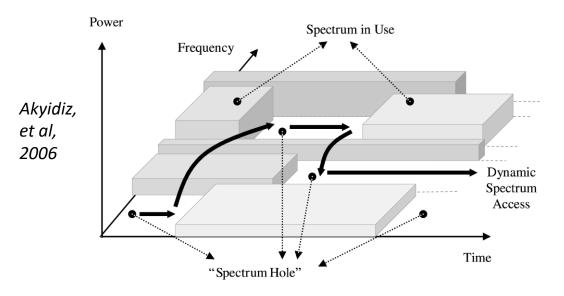
Extensions of Adversarial Attacks in Wireless

- Transmitted signal is unknown to the adversary (universal perturbation)
 - Y. Sagduyu, T. Erpek, et al., IEEE CISS, 2020.
- Target classifier is unknown to the adversary.
 - Y. Sagduyu, T. Erpek, et al., IEEE CISS, 2020.
- Channel information is only partially known to the adversary.
 - Y. Sagduyu, T. Erpek, et al., https://arxiv.org/abs/2005.05321
- Multiple receivers to be fooled with a signal perturbation
 - Y. Sagduyu, T. Erpek, et al., https://arxiv.org/abs/2005.05321
- The adversary is equipped with multiple antennas.
 - Y. Sagduyu, T. Erpek, et al., IEEE Globecom, 2020.

Other Adversarial Machine Learning Attacks

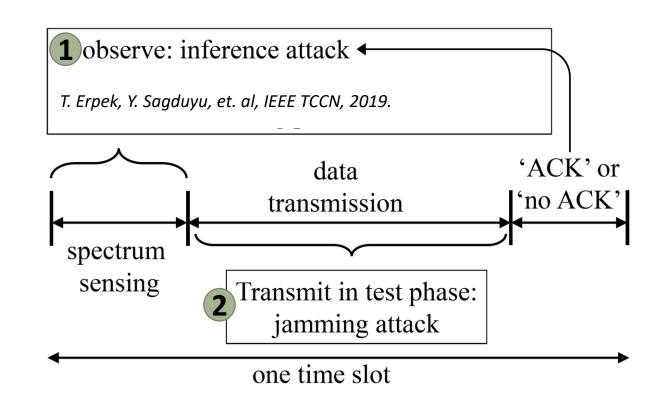
Dynamic spectrum access (DSA)

- An incumbent user transmits intermittently.
- A transmitter senses the channel and transmits only when it is idle.



Inference (exploratory) attack

• Sense the spectrum and train a surrogate model to mimic transmit behavior



(2)

Inference-based jamming attack

• Use the surrogate model to predict and jam data transmissions that would other succeed.

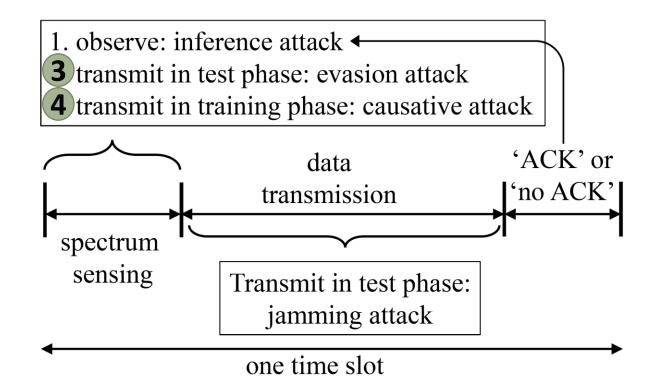
Other Adversarial Machine Learning Attacks

Evasion (adversarial) attack

• Jam the spectrum sensing period such that the transmitter makes wrong transmit decisions.

Causative (poisoning) attack

• Jam the spectrum sensing period such that the transmitter makes wrong transmit decision.



Y. Sagduyu, T. Erpek, et. al, IEEE TCCN, 2020.

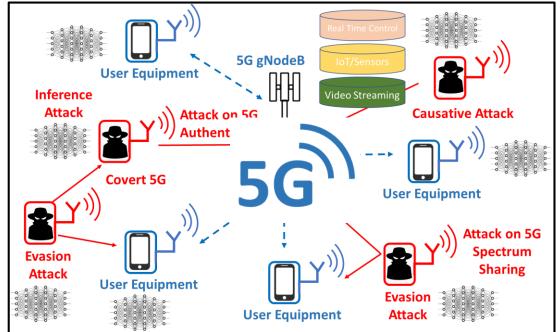
Outline

- Machine Learning
- Machine Learning for Wireless
- Machine Learning for 5G and Beyond
- Adversarial Machine Learning
- Adversarial Machine Learning for Wireless
- Adversarial Machine Learning for 5G and Beyond
 Conclusion

Attacks on 5G Radio Access Network (RAN)

1. Attacks on **spectrum sharing of 5G**.

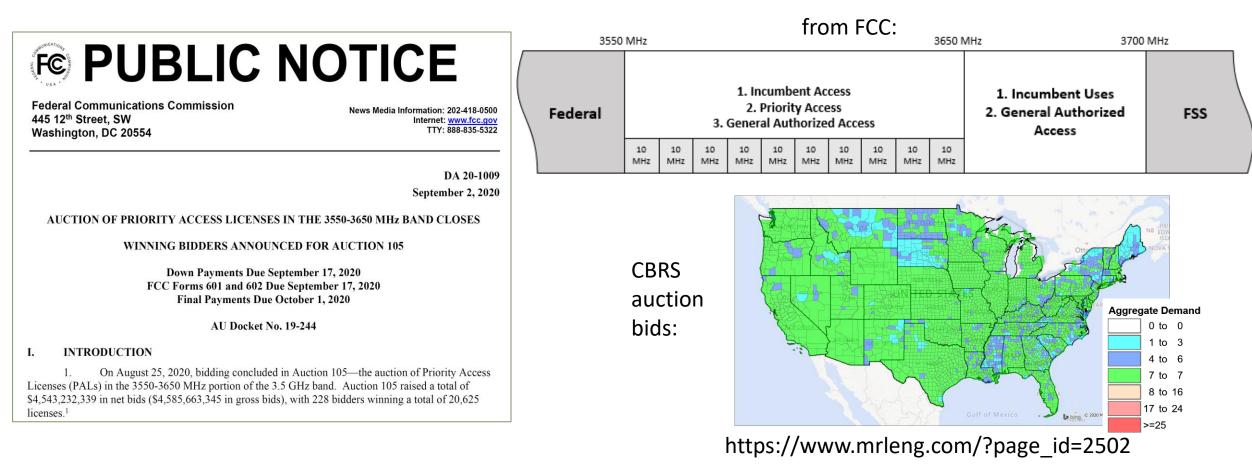
- ML for environmental sensing capability (ESC).
- 2. Attacks to gain access to 5G-enabled services.
 - ML for 5G signal authentication.
- 3. Attacks to establish **covert 5G** signals.
 - ML to detect rogue 5G communications.



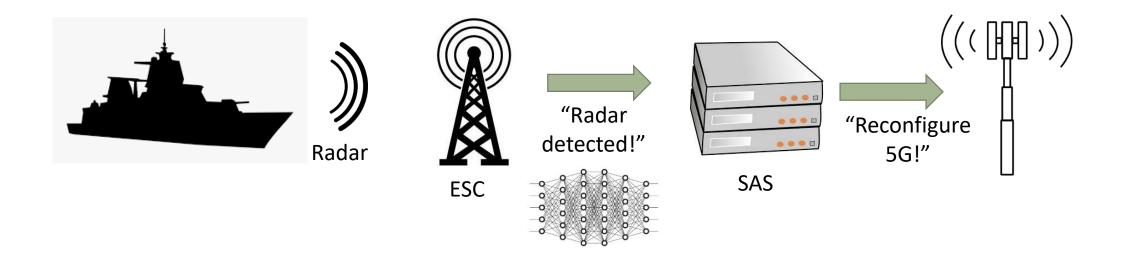
Adversarial machine learning generates new attack surfaces for 5G.

Y. Sagduyu, T. Erpek, et al, IEEE Asilomar, 2020. Y. . Sagduyu, T. Erpek, et al, Springer, 2020.

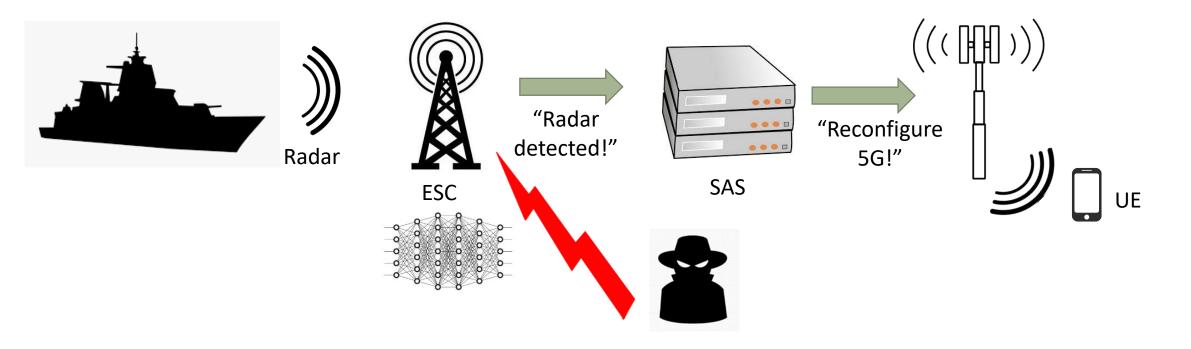
- CBRS (Citizens Broadband Radio Service) band at 3.5gHz is reserved for federal use.
- CBRS band will be opened to be shared by commercial users such as 5G.



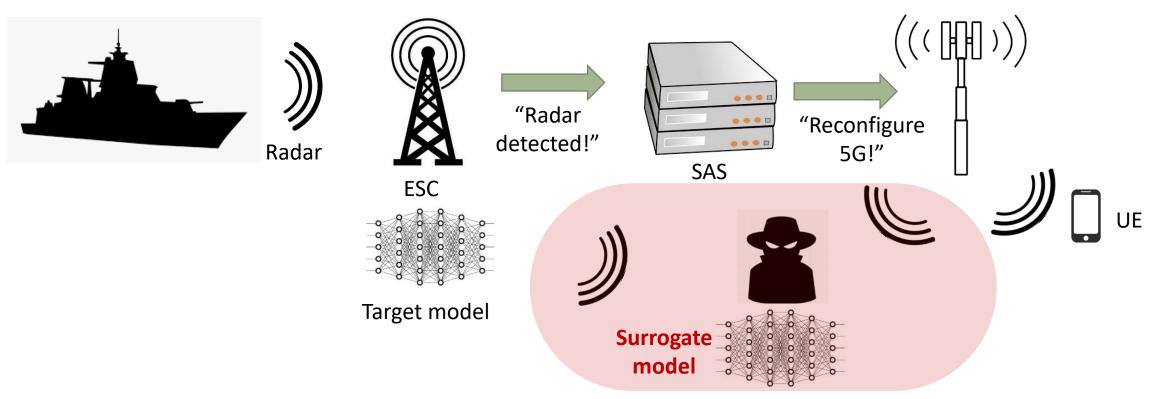
- Environmental Sensing Capability (ESC) needs to detect incumbent radar signals (potentially with machine learning).
- Spectrum Access System (SAS) needs to (re)configure and manage the 5G system.



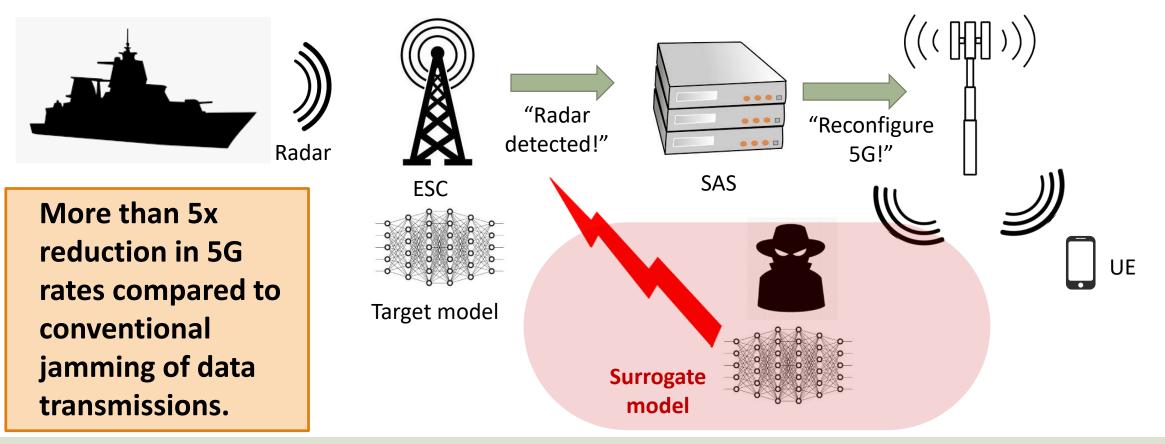
- The adversary transmits **perturbations over the air** to manipulate the input signal to the ESC's ML algorithm **evasion (adversarial) attack**.
 - A stealth attack with low spectrum footprint.
- ESC is fooled into making wrong decisions on the existence of the radar signal.



- The adversary senses the spectrum to collect training data (I/Q data & spectrum access).
- The adversary trains a **surrogate model** to predict when there will be successful 5G communication (if there was no attack).
 - AML can detect all successful transmissions and most (>95%) failed transmissions.

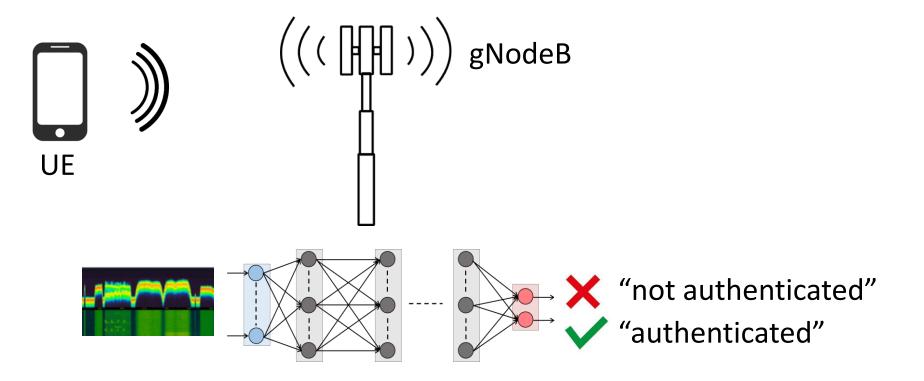


- As an evasion attack, the adversary jams spectrum sensing of ESC period.
- The ESC is provided with manipulated input to its machine learning algorithm and makes wrong decisions on the existence of radar signal.

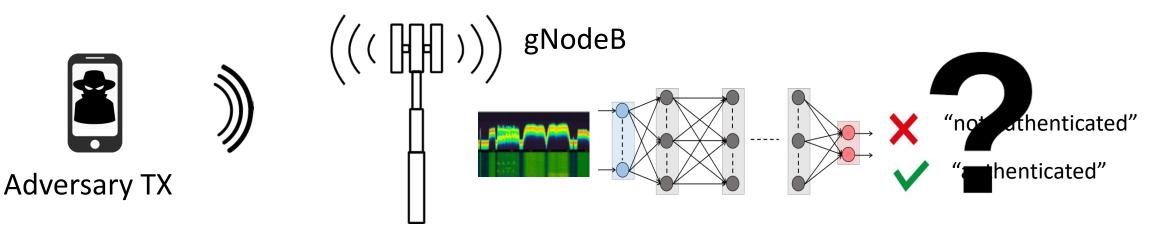


Yalin Sagduyu & Tugba Erpek

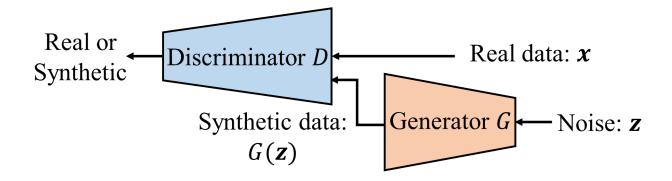
- Devices need to connect to 5G network to gain access to 5G-enabled services, (e.g., through network slices).
- Massive number of heterogenous devices raise the need for PHY-layer authentication.



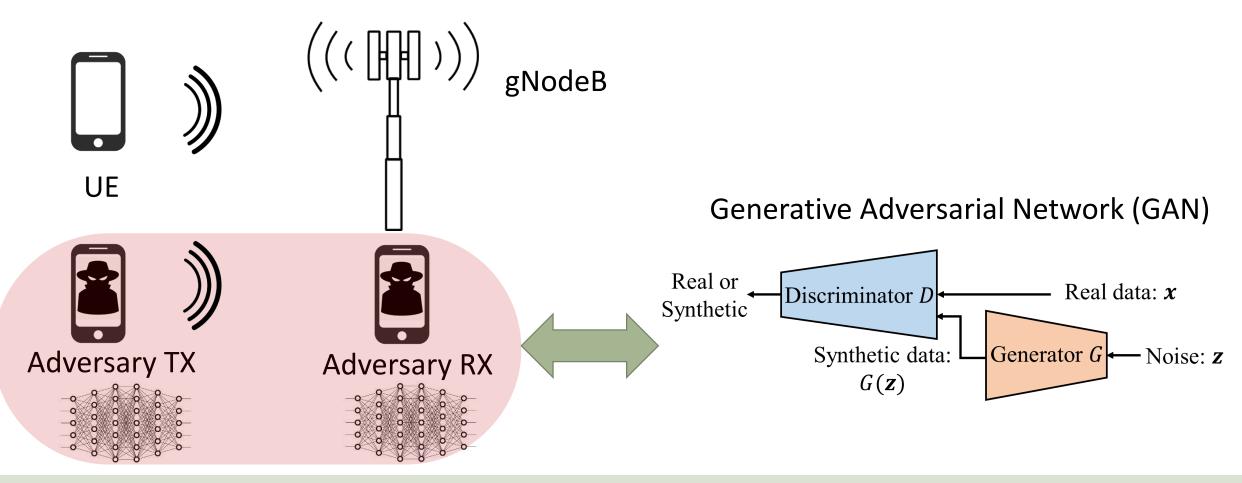
• Adversary spoofs signals to bypass the authentication.



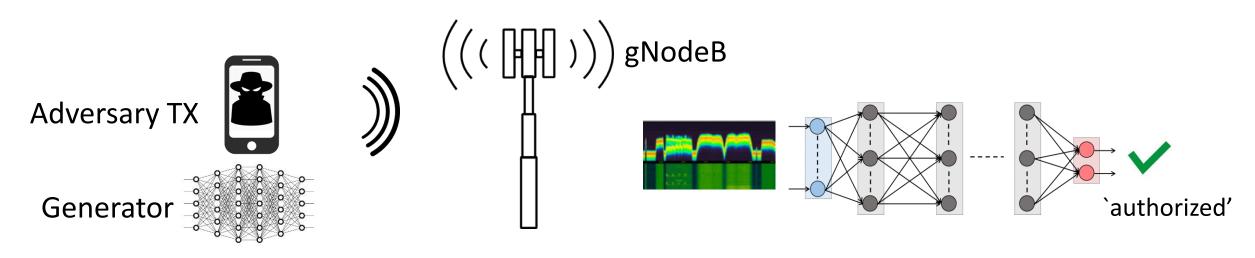
• Spoofed/synthetic signals are generated by using Generative Adversarial Network (GAN).



- Adversary transmitter-receiver pair forms an over-the-air GAN.
 - Adversary transmitter is the generator and adversary receiver is the discriminator.



• The GAN generator of the adversary spoofs signals that fool the gNodeB's DL algorithm.

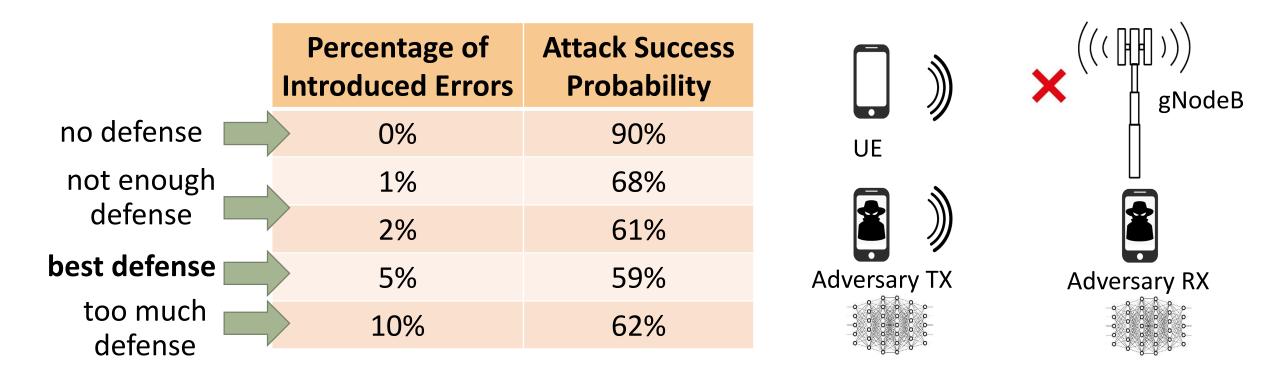


- Captures all waveform, channel, and radio device characteristics.
- Better than replay attacks.

5G Signal Strength	Probability of Fooling the Authentication System
-3dB	61%
OdB	67%
3dB	90%

Defense

- The attacks have started with building a surrogate/generative model at the adversary.
- Proactive defense against 5G spoofing attacks: 5G gNodeB introduces deliberate and selective errors in denying access to a small number of requests from intended 5G UEs.



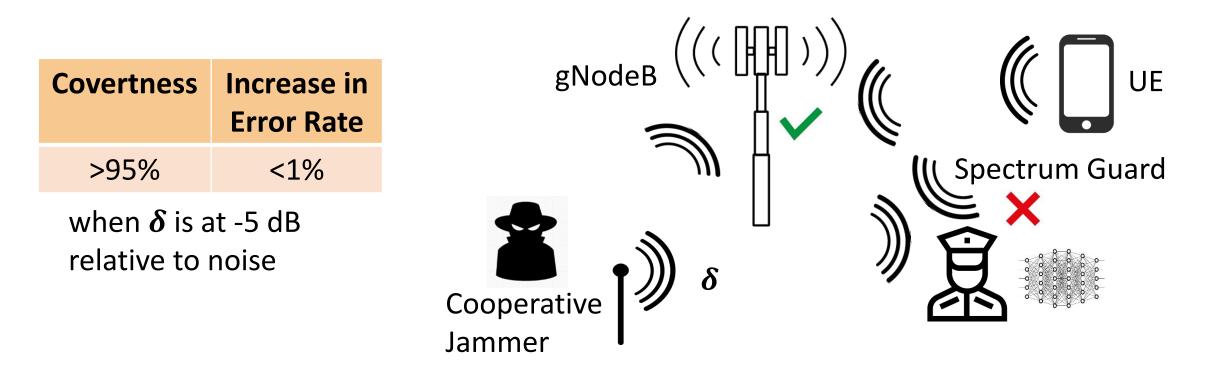
Adversarial ML for Covert 5G – 1

- Adversaries can set up 5G communications in unauthorized places.
- Cooperative jammers transmit perturbations that are superimposed with rogue 5G signals.
- Even when deep learning is used, covert 5G signals cannot be detected.



Adversarial ML for Covert 5G – 2

- By considering channels, cooperative jammer determines the perturbation $oldsymbol{\delta}$ such that
 - 1. the received signal superimposed with ${oldsymbol \delta}$ is misclassified as noise, and
 - 2. covert 5G signals are reliably decoded by the gNodeB subject to interference due to δ .



Conclusion

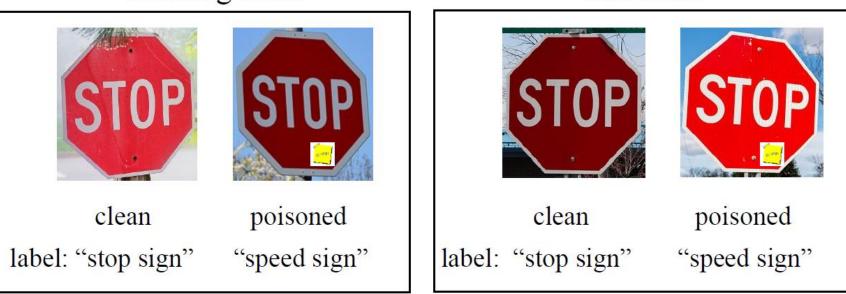
- Machine learning finds diverse use cases in wireless communications including 5G and beyond.
- Adversarial machine learning generates a new attack surface in wireless domain subject to its unique characteristics.
- Wireless systems including 5G are **heavily vulnerable to adversarial machine learning**.
- More work is needed to further understand this new attack surface with additional attack modalities and corresponding defense techniques.

THANK YOU!

FOR QUESTIONS: Yalin Sagduyu, ysagduyu@i-a-i.com Tugba Erpek, terpek@i-a-i.com

Trojan (Backdoor) Attacks

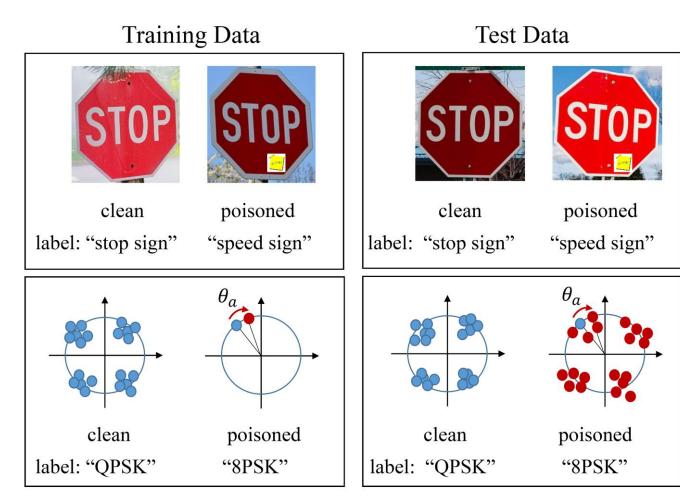
- Attack in **both training and test times**.
- Adversary's Goal: Select a small number of training data samples to embed with triggers (add perturbation and flip label).
- **Outcome**: Only test samples with triggers are misclassified while other samples are correctly classified.



Training Data

Trojan (Backdoor) Attacks in Wireless - 1

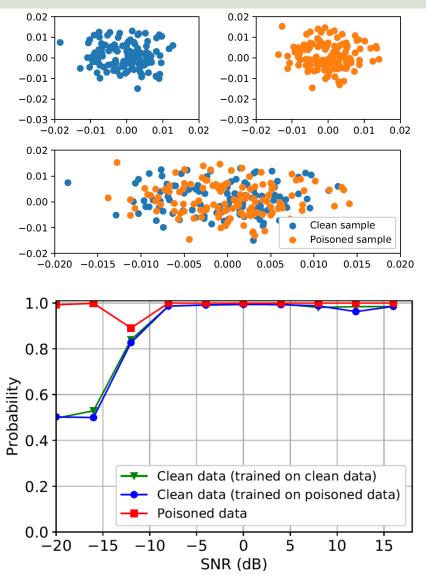
- In the wireless domain,
 - Trojans are harder to detect visually.
 - Trojans can be added through phase offsets, amplitude, etc.
 - Data collection manipulation can be done remotely.
- However, triggers are harder to control by the attacker in test time.
 - Needs to be done over the air.



K. Davaslioglu, Y. Sagduyu, IEEE DySPAN 2019.

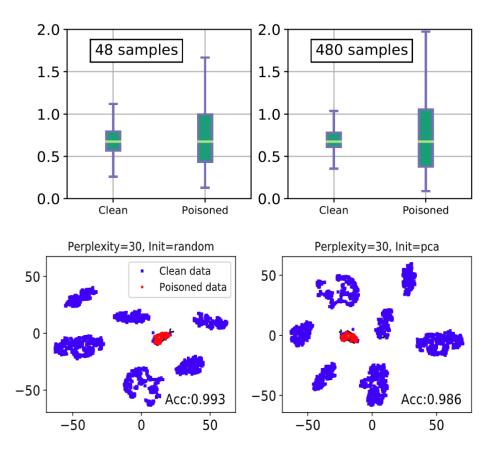
Trojan (Backdoor) Attacks in Wireless - 2

- Adversary poisons some training samples with triggers (e.g., by adding small phase shifts).
- Adversary has two objectives:
 - Increase the probability of misclassifying poisoned samples.
 - Keep the classification on clean samples high.
- The attack is stealth and successful in satisfying both attack objectives.
- The attack forces a target signal classifier to **misclassify unauthorized signal as legitimate**.



Defense for Trojan Attacks in Wireless

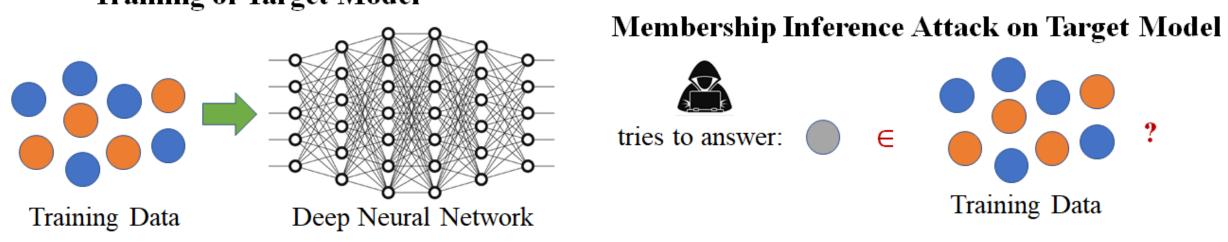
- 1) Data augmentation with rotations (proactive): Significantly reduces the accuracy of clean samples.
- 2) Statistical detection of triggers: Statistical outlier detection using the Median Absolute Deviation (MAD) algorithm. Performance depends on the amount of poisoned data.
- **3) Clustering-based detection of triggers**: t-SNE based clustering for dimensionality reduction and SVM-based detection. Achieves >98% accuracy.



Privacy Attacks

Membership Inference Attack (MIA)

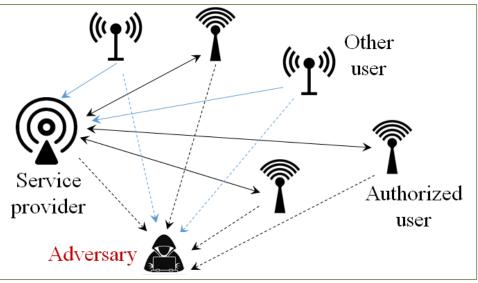
- Attack in test time.
- Adversary's Goal: For a given sample, identify whether it belongs to the training data (using the surrogate model based on the exploratory (inference) attack).
- **Outcome**: Leaked information to exploit vulnerabilities of the machine learning model.

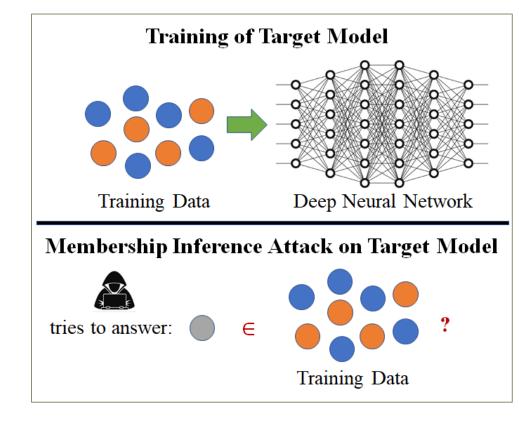


Training of Target Model

Membership Inference Attack in Wireless

- The adversary aims to infer if a signal of interest has been used to train a wireless signal classifier or not.
- Leak information on **waveform**, device and channel characteristics that are embedded in signals.
- Use the leaked information of authorized users to generate signals that infiltrate a user authentication system.





Y. Sagduyu, et al, ACM WiseSec, 2020.

Membership Inference Attack in Wireless

- Adversary builds a surrogate classifier by monitoring the spectrum activity of users and service provider.
 - The surrogate classifier is **not exactly the same as** the service provider's classifier due to channel differences.
- Features to infer the training data membership.
 - Case 1: Both phase shift and received power values.
 - Case 2: Only received power values.
 - Case 3: Only phase shift values.
- It is better to use both features together.
- Power is more important than phase shift for this attack.

Case 1					
$\operatorname{Real} \setminus \operatorname{Predicted}$	non-member	member			
non-member	0.9152	0.0848			
member	0.1429	0.8571			

Case 2

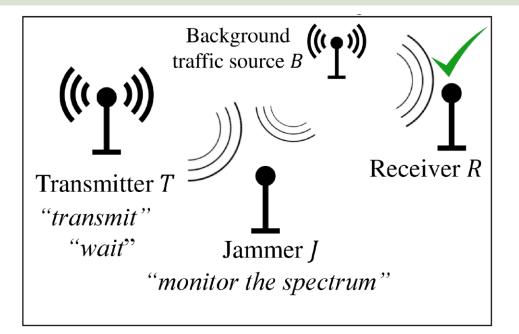
$\operatorname{Real} \setminus \operatorname{Predicted}$	non-member	member
non-member	0.5770	0.4230
member	0.1429	0.8571

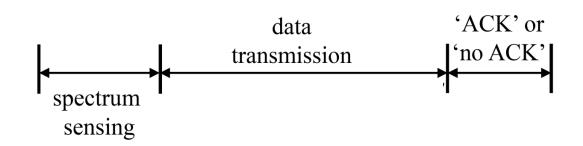
Case 3

$\operatorname{Real} \setminus \operatorname{Predicted}$	non-member	member	
non-member	0.4766	0.5234	
member	0.2199	0.7801	

Inference Attack for Jamming

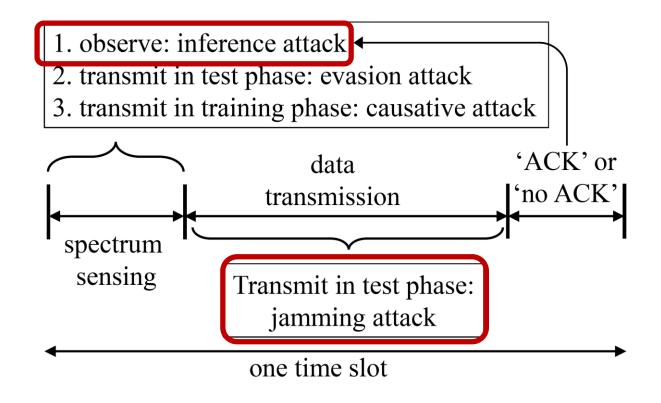
- There is a background (primary) transmitter using the channel intermittently.
- A transmitter senses the spectrum and transmits when it predicts an idle channel.
- Transmitter uses a **deep neural network** to predict when the channel is idle.
 - Features: Recent sensing results (RSSIs)
 - Labels: Channel is `idle' or `busy'
 - Throughput 0.304 packet/slot
 - Success ratio 73.79%
- If SNR ≥ threshold, the transmission is successful, and the receiver sends and ACK back to the transmitter.





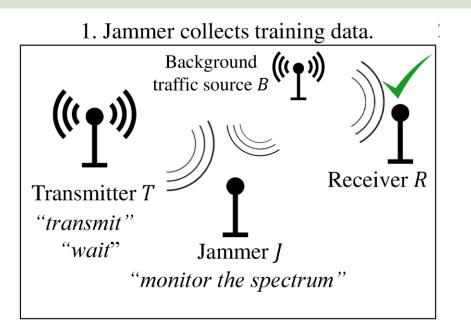
Inference Attack for Jamming

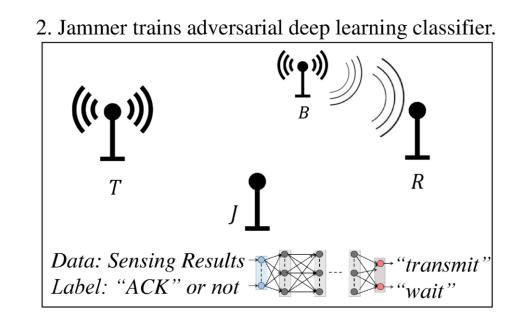
- An adversary trains a surrogate classifier (inference attack) by observing the spectrum.
- The adversary senses the spectrum, uses its surrogate classifier to predict when there will be a successful transmission, and jams the channel.



T. Erpek, Y. Sagduyu, et. al, IEEE TCCN, 2019.

Steps 1-2 of the Attack (Inference Attack)





• The adversary's surrogate model **will not be the same** as the model of the transmitter.

Different features

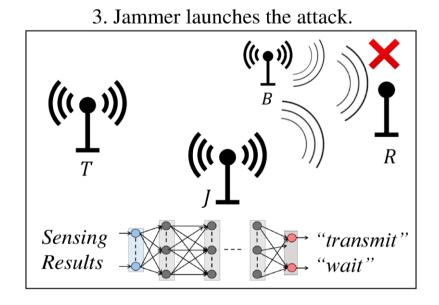
• Sensing results at the adversary are different from those of the transmitter due to channel differences.

Different labels

- Transmitter classifies channel as idle or not.
- Attacker classifies the current time slot as with a successful transmission (ACK) or not.

Step 3 of the Attack (Jamming Attack)

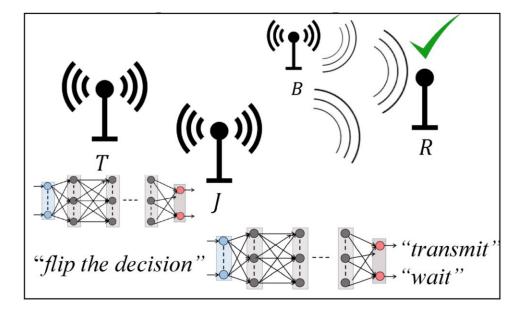
 The adversary uses its surrogate model and jams the channel when it predicts there will be a successful transmission based on sensing results.



Attack type	Throughput	Success ratio	
No attack	0.766	95.75%	
Adversarial deep learning	0.050	6.25%	
Sensing-based attack ($\tau = 3.4$)	0.140	16.99%	
Random attack	0.383	47.88%	

Proactive Defense

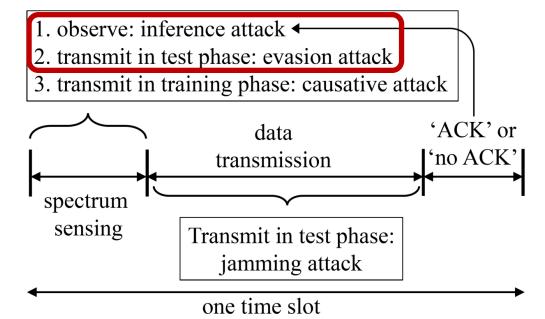
- Transmitter's classifier makes few deliberate errors.
 - not transmitting even if channel is detected as idle, or
 - transmitting even if channel is detected as busy.
- Adversary cannot build a reliable surrogate model.
- **Defense goal**: Select the number of defense actions (add errors to samples with high classification confidence).



	p_d	Jammer error probabilities		Transmitter performance			
		Misdetection	False alarm	Throughput (packet/slot)	Success ratio	Best	
	0% (no defense)	4.18%	14.53%	0.050	6.25%	defense	
Defense increases	10%	17.53%	23.68%	0.132	17.98%	level	
	20%	32.80%	33.33%	0.216	31.67%		
	30%	33.92%	38.25%	0.194	30.41%	in terms of	
	40%	35.83%	37.31%	0.178	31.67%	throughput	
	50%	38.97%	38.33%	0.170	32.32%		

Attacks on Spectrum Sensing - 1

- Step 1: Inference attack (build a surrogate model)
 - False alarm = 1.98%, misdetection = 4.21%
- Step 2: Evasion (adversarial) attack in test time.
 - Using the surrogate model, jam the (short) spectrum sensing period such that the transmitter makes wrong transmit decisions.
 - Energy efficient and stealthy attack.

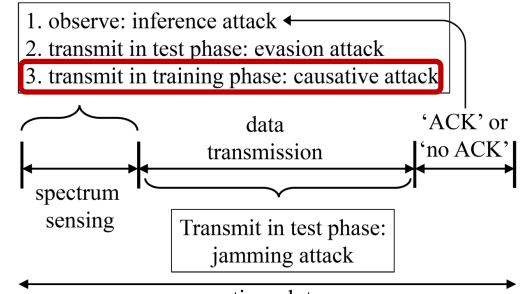


	Normalized throughput t	Success ratio s	All transmission ratio a
no attack	98.96%	96.94%	19.60%
with attack	3.13%	75.00%	0.80%

Y. Sagduyu, T. Erpek, et. al, IEEE TMC, 2020.

Attacks on Spectrum Sensing - 2

- Step 3: Causative (poisoning) attack in (re)training time (when the classifier is updated).
 - Using the surrogate model, jam the spectrum sensing period to make the updated classifier worse than before.
- Different attacks can be combined.



one time slot

	Normalized throughput M_{Th}	Success ratio M_{Sr}	All transmission ratio M_{Tr}
no attack	98.96%	96.94%	19.60%
evasion attack	3.13%	75.00%	0.80%
jamming	41.67%	40.82%	19.60%
causative attack	87.27%	60.76%	31.60%
causative + evasion attack	2.72%	75.00%	0.80%
causative + jamming attack	37.27%	25.95%	31.60%

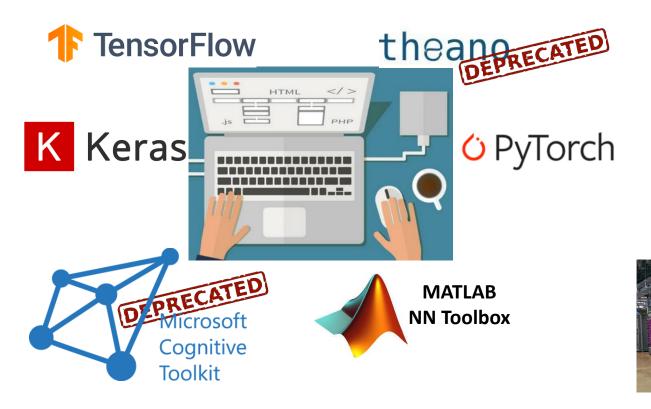
Proactive Defense

- The transmitter's classifier makes some deliberate errors.
- The adversary cannot build a reliable surrogate model.
- **Defense goal**: Select the number of defense actions (add errors more to samples with high classification confidence).

	# of defense operations		or probabilities			
	divided by # of all samples	Misdetection	False alarm	Normalized throughput	Success ratio	
	0% (no defense)	1.98%	4.21%	3.13%	75.00%	Best
Defense increases	10%	6.99%	10.59%	15.63%	15.31%	defense
	20%	8.92%	35.29%	41.67%	28.78%	level
	40%	10.12%	42.67%	51.04%	18.22%	level
	60%	17.06%	69.44%	76.04%	18.07%	
	80%	10.88%	93.22%	56.25%	13.30%	in terms of
						throughput

Machine Learning Today

ML Software Tools



Google Cloud TPU

From cloud backend to embedded

platforms

Nvidia Nano

ML Computation Resources

https://docs.microsoft.com/en-us/azure/machinelearning/how-to-deploy-fpga-web-service

Embedded Implementation

- Implement algorithms on embedded platforms for fast decisions in microsecondmillisecond time frame.
 - FPGA, embedded GPU, and ARM.
 - Support edge processing.
 - Determine the most applicable platform based on the latency, accuracy and power efficiency requirements.

Other Adversarial Machine Learning Attacks

• Dynamic spectrum access (DSA)

- An incumbent user transmits intermittently.
- A transmitter senses the channel and transmits only when it is idle.

Inference (exploratory) attack

• Sense the spectrum and train a surrogate model to mimic transmit behavior

Inference-based jamming attack

• Use the surrogate model to predict and jam data transmissions that would other succeed.

3 Evasion (adversarial) attack

• Jam the spectrum sensing period such that the transmitter makes wrong transmit decisions.

Causative (poisoning) attack

• Jam the spectrum sensing period such that the transmitter makes wrong transmit decision.

