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Abstract

The difference between state and non-state authored code
is typically described in vague terms of sophistication,
contributing to the inaccurate confirmation bias of many
in the policy community that states simply ’do it bet-
ter’. Leveraging the results of reverse engineering sev-
eral malware samples, including Sandworm and Tinba,
this paper is an interdisciplinary effort to distinguish be-
tween state authored code, milware, and that produced
by non-state actors, malware. Working through this ini-
tial set of samples, the paper describes a new analytic
framework for differentiating state authored code from
other samples. This MAlicious Software Sophistication
or MASS index relies on a set of characteristics which
describe the behavior and construction of malicious soft-
ware: propagation to and within a target network, ex-
ploit severity, and payload customization. Highlighting
these distinctions then serves to support a larger analy-
sis of the policy implications these separate categories of
malicious code have. By identifying a systematic differ-
ence between non-state authored code and that created
by states, this pilot project is an effort to generate a new
analytic asset for the technical community and highlight
attendant policy implications.

1 Introduction

Pervasive development and use of milware constitutes
not only a direct technical challenge of decomposing and
analyzing well obfuscated code but also threatens a set
of key assumptions underpinning the current information
security research and defense paradigm. States operate in
a different legal regime than criminal groups and individ-
uals, inverting the power relationship between attacker
and defender and altering what is possible in the defense
against and prosecution of sources of information assur-
ance threats. This paper develops the MASS index as a
rudimentary tool for analysts to distinguish between state

and non-state authored code but its primary contribution
is to highlight five major implications of milware:

Public disclosure is not as effective. States have little
to fear from public disclosure of their activities and so the
traditional paradigm of revealing tactics and techniques
to dissuade attackers and aid defenders is less effective.

States may be doing R&D for all malicious actors.
States have far more resources to develop new techniques
and exploits than non-state actors. The eventual prolifer-
ation of this code by individuals and criminals means the
state of the art will continue to advance, funded by gov-
ernments.

Even where they do not build the capabilities, states
may be distorting the market. State’s financial re-
sources may price defenders out of the market for ex-
ploits and even bring new sellers into play.

Existing legal tools presume the targets of prose-
cution are non-state actors. Law enforcement targets
individuals and non-state groups but states are operating
under this same legal regime, allowing them to act with
relative impunity.

Milware privileges access over effects. States have
taken advantage of the current emphasis on defensive and
information assurance standards over software developer
liability.

Before understanding the implications of this dis-
tinct category of code, our first task is to recognize its
existence. Previous work presented has attempted to
move beyond the simple sophisticated/unsophisticated
dichotomy and succeeded in developing a metric that
measured social engineering tactics. [1] We advance this
scholarship by focusing on the functional characteristics
malicious code and comparing the work of state and non-
state actors to better understand what is common to ma-
licious software and what depends on the unique opera-
tional demands of state versus non-state actors.

Starting with a description of the samples analyzed
and our selection process, this paper explains the char-
acteristics we developed to delineate between milware



and malware. Walking through an example reversing
process, the paper describes the key features in the sam-
ple, highlighting where they tend to differ between the
categories. Milware has a higher frequency of 0day
use and generally employs vulnerabilities with a more
severe CVE classification. While the targets of mal-
ware, and milware overlap, their movement within target
networks differs; milware propagates to particular high
value nodes in a deliberate, often human directed, fash-
ion while malware reflects an automated, scattershot ap-
proach.

2 Background

Malicious software analysis has long been focused on in-
dividually functional components in code, using infor-
mation gleaned from particular modules to describe the
function of an entire sample in a sound but somewhat
limiting bottom up approach. Our approach attempts
to work top down, establishing three broad components
of all malicious samples; propagation methods, exploits,
and payloads. [2]

Propagation is the means of transporting malicious
code from origin to target; this could be as simple as a
mass email for spear phishing attacks or as complex as a
crafted dropper module. Exploits act to enable the prop-
agation method and payloads operation. The payload is
code written to achieve some desired malicious end.

The three components work in concert but each have
substantially different roles; the propagation method
moves the entire software package from origin to tar-
get while the payload is written to manipulate system
resources and create some effect on a computer system.
Exploits are not themselves malicious, but rather act to
support the propagation method and payload. Achiev-
ing root access on a machine does not create an effect by
itself; rather it makes such an operation possible, creden-
tials theft for example. This terminology is at odds with
some usage, which combines the payload’s function into
the exploit and uses the combination as a verb, to ’ex-
ploit’ a system. [3]

This approach however limits our ability to categorize
and understand malicious code; the two are logically dis-
tinct both in sequence and form as exploits are written to
a particular vulnerability present in some piece of soft-
ware while payloads are written to achieve a particular
effect. This distinction, between writing to the target and
writing to the effect, make for divergent practices in de-
veloping, selling, and integrating exploits and payloads.
Without one or several exploits, a payload would almost
never be able to execute on a target computer - these ex-
ploits serve to manipulate the target system into giving
malicious code access and user privileges necessary to
function. Each of the three components of this frame-

work [2] has a distinct purpose and works in combination
with the others to constitute a malicious package.

Differentiating between sophisticated and unsophisti-
cated samples is not a new area of work in the infor-
mation security community; static and dynamic analy-
sis techniques have been in use and evolving for several
decades. [4, 5, 6, 7, 8] The origin of samples has come
to the foreground more in the past decade as efforts have
shifted to understand the nature of threats and their ac-
tivities beyond the network perimeter. As part of this
change, the motivations of attackers and their political
status has become a factor of interest. [1, 9] Analytically,
the next step is understanding the relationship between
the complexity and capability of a piece of malicious
code and the nature of its authors. We do this by focusing
on the discrete components outlined above, the propaga-
tion method, exploits, and payload, an approach which
has seen some use. [10]

3 Data Collection

We selected a set of malware and milware samples for
both accessibility and their chronological proximity. Our
ability to work directly with the milware samples was
limited by agreement and so relies in part on open source
documentation. Malware selection was driven by three
key factors: scope of impact, availability of samples,
and knowledge of lineage. Using malware samples with
a long history of use allowed us to consider crossover
between samples and select more complete instances of
code.

To achieve the clearest possible distinction be-
tween milware and malware, we selected two sam-
ples from each category. Malware samples included
Game Over Zeus (GOZ) and Tinybanker (Tinba) while
Sandworm and code used in the Sony Attacks were se-
lected as our milware samples. Each code has had wordl-
wide impact of one type or another and propagates using
a different method.

4 Methods

To gain a fuller understanding of our samples, we un-
dertook to reverse engineer each in a controlled lab en-
vironment using both static and dynamic analysis. This
process leveraged existing and widely used tools, includ-
ing IDA Pro [11], BOCHS [12], WinDBG [13], Immu-
nity [14], and SysAnalyzer [15], in a live running envi-
ronment. These tools helped document the changes our
samples made to the testing system and parsed each bi-
naries, enabling us to work with readable machine code.
This analysis also considered how samples interacted
with their surrounding network so we included TCP-
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DUMP [16] and WireShark [17] to gather and analyze
outbound traffic.

4.1 Milware
The Sandworm group, a Russian linked state sponsored
or supported hacking organization, has been running a
multinational intelligence gathering campaign on West-
ern states from as early as 2009. [18] The propagation
method typically observed with Sandworm attacks in-
volves spear-phishing email to the target with an attached
powerpoint document that, when opened, will trigger
CVE-2014-4114 to compromise the target system. [19]

The Sandworm attacks targeted largely NATO states
and affiliated countries including the United States,
United Kingdom, and the Ukraine; the breadth of this
spread allows us to to analyze the propagation patterns
behind a single case of milware exploiting a single CVE.
The payload employed similar functionality to several
malware samples, including the GOZ code examined
in this paper, through its selection of communica-
tion tactics with a command & control server. This
gave us a unique opportunity to compare and contrast
the specific functionality between the two pieces of code.

The second milware sample under analysis is from
the recent Sony attacks. While not a coherent, multi-
target attack like Sandworm attacks, this particular chain
of events provides insight into the functional process of
an attack by state affiliated actors. The world was able to
observe every step of the compromise, from infiltration
through social engineering to the compromise of Sonys
infrastructure to the subsequent exfiltration and termina-
tion of corporate data. These milware samples exhibit
particular characteristics in their propagation methods,
exploit selection, and payload behavior that help delin-
eate them from more conventional malware binaries.

4.2 Malware
GOZ is piece a of malware that, when installed on a tar-
get system, will establish a P2P connection based on
the Kademlia protocol. [20] The binary propagates us-
ing phishing emails containing links that redirect to com-
promised web hosts that serve malware to the target, us-
ing the Blackhole Exploit Kit to leverage vulnerabilities
in the victim’s web browser. A dropper module then
deposits a piece of code on the target system to exe-
cute the GOZ payload which attempts to contact the CC
server. [21]

The selection of GOZ was based off the observed simi-
larities to Sandworm in botnet functionality and provided
a basis to contrast the the two with regard to their com-
munication protocol. [21, 18] GOZ’s use of the Black-

hole Exploit Kit demonstrates a common feature of mal-
ware; reliance on pre-existing third-party exploit pack-
ages. This is directly at odds with Sandworm’s use of
a more particularly selected and applied exploit to gain
access to target systems.

This use of an exploit kit is nothing new an indeed is
present in the second malware sample analyzed in this
paper. Tinba is a banking trojan that has become no-
torious for its incredibly small size, clocking in at only
20kb. Tinba’s propagation method uses a set of com-
promised websites to distribute code to victim systems,
either via linking to a web host in a phishing email or
by targeting certain users browsing habits; the group be-
hind Tinba is notorious for compromising pornographic
web sites and indeed this now serves as the main mode of
Tinba propagation. [22] Once the victim visits the com-
promised web host, much akin to GOZ, Tinba uses the
Blackhole Exploit Kit enable installation of a dropper on
the victim’s system. Lastly, this dropper downloads and
installs the Tinba payload from a predetermined list of
URLs. Tinba, unlike GOZ, does not emphasize on botnet
functionality in its payload, instead it focuses on skim-
ming victim’s banking information through the use of
web-injects and function hooks. [23]

Both samples of malware differ in the type of data tar-
geted and the manner of exfiltration but each makes use
of the Blackhole Exploit Kit to successfully propagate
and execute their respective payloads. This fact demon-
strates some of the limitations of developing code for ma-
licious purposes - designing several payloads may well
be less costly in terms of information and human capital
than keeping abreast of the latest vulnerabilities present
on a particular target systems and continually develop-
ing new exploits to match. This encourages malware’s
relatively broader propagation - the proportional rate of
success for all attacks is lower than for more targeted ef-
forts but the victim pool is made substantially broader
to compensate. Each group distributing malware, while
they might find it cost-effective to develop an original
payload, appear willing to use the same vulnerabilities
found in many other samples of malware to gain code
execution on the target system.

This breadth of propagation is further reinforced by
the selection of a kit like Blackhole, which targets
browsers with a variety of potential exploits in any given
iteration. Blackhole targets victim interactions with the
web browser; consequently, by loading an iframe con-
taining malicious JavaScript into the victim’s browser,
Blackhole will detect which exploits the victim is vul-
nerable to and craft an environment wherein the victim
will be exposed to a condition that triggers the exploit
and executes the associated payload. [24]

While not a core sample, the Blackhole Exploit Kit is
taken into consideration in the analysis due to its signifi-
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cance in GOZ and Tinbaand prevalence in other malware
as a means to support propagation.

4.3 Sample Analysis
Our methods of analysis focused on differences and sim-
ilarities amongst the gathered samples. In addition to tra-
ditional reverse engineering techniques, we also chose to
study how the samples acted in a network environment
similar to those found in corporate and personal targets.
In so doing, we were able to observe how malware prop-
agated both to, and within, a target differently from mil-
ware. Comparing Sandworms use of CVE-2014-4114
with Tinba and GOZ’s use of the Blackhole Exploit Kit,
we were able to identify key differences between their
respective propagation methods.

Starting with GOZ and Tinba was, we determined the
life cycle of each sample by using IDA Pro to examine
what the code from each malware sample looked like,
what it was packed with, if it was encoded, and what
techniques were used to compromise and gain root ac-
cess to the system. At higher level, to measure differ-
ences such as impact on the system and internal network
propagation, we simulated a network of computers and
watched how our samples interacted with each node on
the virtual network. The paper’s goal is to create a more
robust series of identifiers for which to classify malicious
samples. To do this we targeted core similarities shared
between each sample of malware and milware, then clas-
sified the strongest found similarities within each cate-
gory.

To follow the life cycle of an attack, we started
with the propagation of code to the target. While
GOZ alone used the Cutwail botnet to spread, both
GOZ and Tinba used emails containing links to mali-
cious web servers and compromised web hosts, inadver-
tently serving malware. [21, 22] The emails contained
lures to bait the victim to click through to these sites;
these lures were crafted email templates emulating un-
paid invoices, negative account balances and social me-
dia advertisements containing logos and identifiers that
belonged to legitimate companies. To verify this, we set
up a honey-pot to try and attract emails from these spam-
mers and what we received was poorly customized and
did, in fact, lead to known malicious web hosts serving
Blackhole Exploits. [25] The found URL patterns are as
follows:

[redacted].php?pBzmU=ePRGAAKDWk

&CMSgsDyzkuFvs=JnhjMIPLmQY

200 OK (application/java-archive)

[redacted].php?DgdAXYmfoKifsN=sNZsfdfdRLslud

&xpcuSaClYajZ=bsczZZysmLE

200 OK (application/java-archive)

GOZ and Tinba both make heavy use of the Black-
hole Exploit Kit as a means of facilitating code execu-
tion on the victims computer. This fact wassignificant in
our analysis; unlike milware, malware is willing to make
use of third-party exploit kits. This use of a commercial
exploit kit helps support the analysis that malwares ob-
jective is to infect as many victims as possible. Some of
Blackhole’s releases make use of 15 to 24 existing CVEs
with CVSS scores ranging between 6 and 9.5; however,
most of the CVEs used in Blackhole are half-day exploits
which are known vulnerabilities that have been patched
by the manufacturer. Subsequently, this indicates that
those who are using Blackhole do not necessarily need
to guarantee code execution on a high percentage of their
targets, but instead propagate to as many victims as pos-
sible.

Moving from propagation to payload, we found
that while the purpose of each sample was different,
Tinba being a banking trojan and GOZ a botnet, there
were key similarities between the two. Most predomi-
nant of these was the ability to glean account information
from, and dynamically inject web content into, targeted
browsers. This functionality is seen on a number of mal-
ware samples in the wild and requires very little specific
information about the victim prior to attack. [26, 27, 28].
In a limited extension of this pilot study,digging deeper
into the payload’s code base, we found that even when
looking at a new strain of these samples, there were a
striking number of similarities. [28]

Analyzing each of the two milware samples, we took
considered the findings from our malware binaries and
used the PrEP framework to draw parallels between the
two sets in order to identify key differences in propaga-
tion, exploitation and payload functionality. While our
work with the milware samples was limited by relatively
greater reliance open source documentation than with the
malware samples, we were able to utilize an arms-length
relationship with an information security vendor which
included some analytical support with the source of our
samples. Although we did not posses binaries, we were
able to obtain the .text, .code, .data and .bss sections,
where applicable, as well as the imports and exports of
the binaries to statically analyze. To confirm or refute our
propagation hypotheses, we relied on first hand accounts,
gathered emails and official documentation.

Working with Sandworm, we immediately looked to
the propagation method attackers chose to distribute their
code. Examining multiple email samples sent to vic-
tims, we found a generally high level of customization in
the prose which specifically targeted their victims. [29]
The Sandworm attackers also used attached Powerpoint
slides to initiate CVE-2014-4114 on the victim’s com-
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Sample Classification Propagation Exploitation Method Payload Features
Sandworm Milware Tailored

Spear Phishing
CVE-2014-4114 BlackEnergy The payload, fontcache.dat, is capable of

executing the following commands:
delete, ldplg, unlplg, update, dexec, exec,
and updcfg.

Sony Attacks Milware Tailored
Spear Phishing
& Physical
Access

SMB Worm Tool Listening Implant
Lightweight Backdoor
Proxy Tool
Destructive Hard Drive Tool
Network Propagation Wiper

The payload allows attackers to download
and execute further payloads, migrate
through the network, pivot to other machines,
exfiltrate data and wipe hard drives.

Game Over Zeus Malware
Email Spam &
Compromised
Web Hosts

Blackhole Exploit Kit GOZ Server The generic payload allows attackers to skim
banking information from the victim, use the
victims internet connection to initiate a
DDoS attack and pivot to other machines on
the Network

Tiny Banker Malware
Email Spam &
Generic
Spear Phishing

Blackhole Exploit Kit Tinba Server The self-contained payload allows the attacker
to skim banking information, pivot to other
machines and persist on the machine through
a backdoor.

Table 1: Overview of Examined Samples

puter. [18] While popular security practice tells users to
never download attachments from untrusted emails, the
work that the Sandworm Group put into crafting legiti-
mate looking emails provided a convincing, tailored, ba-
sis for the recipients to trust the messages and their con-
tent.

Looking at the Sony attack, we had to take a different
approach to analyzing the propagation of the attack due
to the fact that the initial compromise was most likely
due to an insider and not through an email campaign
as seen in our previous samples [30]; however, we still
wanted to focus on the degree of customization present
in the code. To do this we looked at how the milware
acted within the scope of Sonys network. We suspect,
due to the tool set used [31], that the attackers attempted
to breach the higher priority targets in order to further ce-
ment their presence in the network. This process would
involve targeting network administrators’ computers and
using the stolen elevated credentials to breach the Active
Directory and Domain Controller servers to gain access
to credentials used network-wide.

Finally, we considered the design and functionality of
each sample’s payload and suporting exploits. In both
cases, the actual functionality of the payloads were tai-
lored to a particular purpose. In the case of Sandworm,
the attackers used a version of the BlackEnergy remote
administration tool that supported the use of delete, ld-
plg, unlplg, update, dexec, exec, updcfg. These com-
mands allowed the attacker to gain and maintain per-
sistent access to the victims machine through its back-
door functionality as well as allowed the attacker to run
any new payload sent to the system. [32] The payload
deployed on victim machines in the Sony attacks con-
tained narrowly defined functionality, designed for the
purpose of exfiltrating corporate data, further propaga-

tion of the payload through the network, dynamic ac-
cess to compromised nodes, and the destruction of victim
hard drives. [31]

The exploits supporting each of these payloads were
tailored to their function. In the case of Sandworm, CVE-
2014-4114 was used via an email attachment to give the
attacker time to create a backdoor in the system to en-
able further code execution. [19] Within Sony, the SMB
Worm Tool was used to propagate itself through the net-
work after the initial victim was compromised. [31] This
allowed the attackers to traverse network undetected due
to its zero day classification. [31]

5 MASS Index

The analytic tools available to delineate between mali-
cious samples are varied but still rudimentary. Develop-
ing a means to consistently differentiate between types of
code, state-authored samples for example, would be use-
ful to the information security research and policy com-
munity. Leveraging a set of characteristics derived from
the pilot analysis of milware and malware samples out-
lined above, this paper proposes the MAlicious Software
Sophistication or MASS Indexas a basic tool to identify
the authorship of malicious code samples. The MASS
Indexconsists of four main categories by which to clas-
sify malicious software: propagation to the victim, prop-
agation within a network, severity of the vulnerability
used, and tailoring of the payload.

5.1 Propagation

Propagation methods can be classified according to their
Scale and Specificity. Scale determines the total possible
target pool i.e. how many computers and devices from
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the global population are accessible. Code which propa-
gates over the internet is likely to be found much farther
afield than that spread over compromised storage media.
The Scale of a compromised web site would be tremen-
dous if the site in question is Google or tiny if a GeoC-
ities page. Conventional botnets may have tens of mil-
lions of slave machines and present an excellent method
of propagating to targets indiscriminately [33]. A Propa-
gation method which targets all internet connected com-
puters (large scale) is thus different from one which tar-
gets only users connected to a particular local area net-
work (small scale). GOZ’s server contains tools such as
DGAs, USB, NFS, Samba spreading tools, designed to
propagate as widely as possible.

Specificity measures the targeting constraints placed
on malicious code, determining how much of the pos-
sible target pool is of interest or active. These could be
technical limitations, focusing on a particular operating
system or software version, based on personal informa-
tion like account credentials or details about co-workers,
or the presence of certain filenames on the victim’s ma-
chine. Specificity can help to contain the spread of mal-
ware infections, lowering the likelihood of detection and
limiting defensive response.

In propagation to the victim, milware tends towards
medium to small scale and highly specific propagation
methods while we find malware employs large scale
methods with little to no specificity. Propagation scale
can be relatively easily established by looking at the for-
mat code is spread in and the degree of customization of
the delivery vector. This can range from the use of the
Targeted Threat Index [1] with regard to email propaga-
tion, to examining how much prior access or knowledge
the attacker had about the target. In the case of GOZ in-
fections, we see a tendency for GOZ to spread to any other
computer where code execution can be achieved.

In propagation within a network, after the attacker has
compromised the target, there is a great deal of variation
between mil- and malware samples. Milware demon-
strated a trend towards attacking higher value targets be-
fore further propagating to lower value targets, cement-
ing its position in the network. Malware by contrast,
propagated without obvious human input or regard for
the value of individual nodes.

5.2 Exploit Severity

The severity of the exploits used to compromise the tar-
gets serves as another major indicator in the MASS In-
dex. Reuse of exploits or the use of exploits with a
low CVSS generally indicated malware use of higher
scored and chained exploits was associated with mil-
ware. GOZ uses complex 0days to penetrate the target
system; however, as demonstrated in section 4.2, these

0days are compiled together in a Blackhole, a third party
collection of exploits. Because GOZ relies so heavily on
third party exploit kits, the CVSS score, while critical,
is predictable across the board. Consequently, the wider
exposure of these exploits via Blackhole will substan-
tially increase their likelihood of discovery and mitiga-
tion, leading to their use as signatures in many IDS/IPS
solutions. Conversely, in milware we see a higher CVSS
scores across the board; Sandwormhad an over all rating
of 9.3 with a propagation subscore of 10 and exploitabil-
ity subscore of 8.6 [34].

5.3 Payload Customization
Examining the tool set and functionality of the payload in
question, we found the level of capability and customiza-
tion in milware payloads to be higher on average. This
involves the payload in question not containing a broad
set of tools generically used for post-exploitation capa-
bility on machines from a desktop PC to a server, but a
set of tools tailored to each specific target, i.e. a payload
for a web server, a payload for a desktop, and a payload
for a Domain Controller. When looking at Sandworm,
we found a very small set of tools intended to guaran-
tee persistence and data exfiltration. With regard to the
Sony attacks, Table 1 shows that while the payload did
contain some generic tools, they were all tweaked to the
constraints of Sony’s network and limited their function-
ality to said network. By contrast, GOZ’s payload was
identical regardless of the target in question.

5.4 Limitations of Metric
As this is a pilot program, access to both samples and
manpower present major limiting factors. To mitigate
these problems, we chose samples which were wide
spread and/or well documented. In doing so, we could
increase the validity of our findings as well as expedite
the process of reverse engineering. We further supple-
mented our limited resources with technical and incident
response documentation of the milware samples and the
assistance of an anonymous information security orga-
nization for part of our analysis. This is a pilot project
and so the technical indicators we’ve identified in the
MASS index, could be made more robust with access
to a more substantial data set of both mal- and milware
samples. We have developed a proposal for future work
and would be eager discuss these next steps with parties
beyond those we have already solicited.

6 Findings

Using the MASS index, we can begin to draw a conclu-
sion as to consistent means by which to distinguish be-
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Malware Milware
Less attention to detail with regard to exploitation phase
More robust payload/backdoor
Propagation more indiscriminate
Less robust persistence modules
Not tailored to the target beyond the exploit kit’s capabilities

Exploitation phase tailored towards targets
More compact payload with limited functionality
Propagation has a much more limited scope
Persistence modules tailored target to allow for maximum epoch
Each phase of milware life cycle is tailored to the target

Table 2: Core Set of Differentiating Features between Malware and Milware

tween state authored code, milware, and malware. From
our research, we were able to ascertain a core set of fea-
tures present in both sample sets that correlated to the
average life cycle of an attack. Within these features, we
also identified ways in which the malware and milware
samples differed in their operation. Table 1 provides an
overview of our findings with regards to the core set of
features present on each sample while Table 2 identifies
the divergence identified between malware and milware.

Figure 1: Geographic distribution of nodes in the ZeuS
P2P network by Bot ID. (Source: Dell SecureWorks)

The first major indicator that we found across samples
was the method by which code propagated to the victims.
Referring to the Targeted Thread Index, we found that the
emails containing malware had a Targeting Score from 1
to 3 while the emails containing milware had a Targeting
Score from 4 to 5. [1, 35] We also noted that the method
used to expose victims to malicious code varied. As can
be seen in Figure 1, the propagation of GOZ was very
large scale and employed something akin to the ’shot-
gun technique’, prioritizing spread of malicious emails to
as many victims as possible. Milware incidents such as
Sandworm used similar propagation methods with simi-
lar scale but far more restrictive specificity, pushing code
to a highly constrained group of targets. [29] Some work
on the Sony attacks suggests they may not even have in-
volved an email based, and thus medium to large scale,
propagation method. [30] [36]

Examining how samples acted within the target net-
work, we found that milware demonstrated a more hu-
man touch approach as opposed to malware focused on
spreading to as many hosts as possible and typically

moved to topographically proximate peers instead of
high value nodes within the network. This aligns well
with our first observation of malware being focused on
wide-spread initial propagation vice milware’s tendency
to prefer precision. As demonstrated by the Sony attacks,
careful propagation within Sonys network infrastructure
was key to the attackers success. The presence of the
Network Propagation Wiper in the attackers toolkit indi-
cates and interest and investment in covert navigation of
Sonys network. [31]

Both malware samples relied on the Blackhole Exploit
Kit to support propagation and gain access to target sys-
tems. While these different exploit kit versions did con-
tain exploits with a relatively high CVSS, many of these
had already been patched or had mitigation techniques
well known to many professionals. However, when look-
ing at our milware, both samples used exploits with crit-
ically high CVSS ratings that were also of the zero day
category. This shows us that milware will prefer to use a
single exploit that guarantees code execution on the tar-
get as opposed to malware which prioritizes wider prop-
agation and so leverages it based collections of exploits
to successfully compromise a broader array of targets.

Lastly, the way samples interacted with the target sys-
tems post-exploitation was of great interest to us. The
milware samples demonstrated a much higher level of
customization towards their targets, in that the capabil-
ities of the payload did not exceed what was needed of
them. Our malware samples by contrast were focused on
getting maximum utility out of the code, targeting widely
used information types and applications. This difference
allows us to parse a characterizing distinction between
mal- and milware. It also reaffirms our general con-
jecture that malware targets the widest range of victims
while sacrificing probability of success while milware
has a much more narrow victim scope and optimizes for
a higher success rate.

6.1 Implications

The existence of state-authored malicious software is not
a new concept but there has, so far, been little scholarly
investigation into the implications the pervasive devel-
opment and deployment of such a separate category of
code might have. Developing the MASS index, this pa-
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per demonstrates that these categories can be systemati-
cally differentiated. The implications of these two cate-
gories of code are substantial:

Governments experience little direct cost from disclo-
sure of their activities to the public. The commercial and
academic information security community has become
generally oriented around a sunlight is the best disin-
fectant model when it comes to sophisticated actors and
their code. While not an industry standard behavior with
all attackers for competitive reasons, information about
particular techniques, tactics, and exploits has become
both an information sharing device and marketing tool
for information security researchers. One underlying ex-
pectation is that such disclosure will dissuade attackers
and aid defenders. While the publication and circulation
of information about milware is useful as an academic re-
search tool, several years of slick APT reports, including
a trove of information on Chinese [37] and Russian [38]
activities and revelations by Symantec [39] and Kasper-
sky about several alleged US samples, including one es-
pionage framework in place for almost 14 years [40],
seems to have done little to dissuade milware develop-
ment or deployment.

This lack of impact is in large part due to the fact that
milware reverses the traditional hierarchy of information
security, where defenders have the onus of legitimacy
and hackers are operating outside of the law - their ex-
istence a product of the confluence of fundamental in-
security in most commercial software and opportunities
for financial gain. States, to a very rough extent, are the
law and have little fear of material harm from the pubic
effects of disclosure about their activities.

Second, states have substantially greater resources to
develop innovative attack methods and new exploits.
While this resource disparity has long been focused
on the threat of states developing destructive payloads,
an acknowledged resource and expertise intensive en-
deavor [41], a more immediate threat is that these tech-
niques and exploits developed for milware applications
will trickle down to malware authors. [42] The chief
threat of malware then is not the prospect of readily avail-
able destructive payloads, but that states might inadver-
tently fund a massive research and development appara-
tus for non-state groups, further intensifying the disparity
in capabilities between attacker and defender.

It is not a novel idea to suggest that there are a small set
of sophisticated threat actors in the information security
space whose code and tactics may leak into the actions
of others but recognizing the source of these innovations
as states identifies a key problem. States financial and
human resources are substantially greater than any non-
state organizations meaning the output of innovation, in
terms of both variety and volume, is sufficiently great so
as to constitute a fundamentally different phenomenon.

Even where state resources are not used directly to de-
velop new code, the presence of a market like mecha-
nism for groups to buy, sell, and trade components of
malicious software has been established (though not yet
well studied). [43, 44] While estimates of the prices and
popularity of different tools is subject to some debate,
the resources of state actors will impact these markets.
The rise of milware may be pricing software vendors
and other defensive organizations, operating through bug
bounty programs, out of the market. More insidiously,
the presence of states with financial resources to burn
and an appetite for the latest and greatest vulnerabilities
in widely used commercial software may well encour-
age substantial growth in the number and talent of in-
dividuals who participate in this market as sellers. As
the prospect for financial gain increases, more and more
people join in to sell their malicious wares to the high-
est bidder. Milware then offers the prospect of becoming
a driving force in the sophistication and variety of ma-
licious software components, especially vulnerabilities,
available on the web. For states, this might already be
encouraging an arms race to compete for the most effec-
tive espionage tools and weapons. For non-state actors, it
may make milware-like capabilities available to terrorist
groups or criminal organizations.

Fourth, states are largely immune from the existing ar-
ray of legal tools used to locate and prosecute malware
authors and distributors as these resources presume tar-
gets that can be subject to a states jurisdiction. A cooper-
ative, hierarchical model exists in the infrequent collabo-
ration between national law enforcement agencies tasked
with cybercrime. Limiting the use of milware is an inter-
state monitoring and enforcement task more akin to con-
ventional heavy arms sales or export control restrictions.
Non-state actors can be pursued and prosecuted but states
and their milware will largely be subject to the states
own willingness to self-restrain or the ability for other
states to compel the same. This constitutes a parallel en-
forcement and mitigation problem for all parties malware
tends to be large scale and much is indiscriminate. Mil-
ware by contrast is focused on small target sets and is
distributed by actors who are substantively different in
terms of motivation, resources, and dependence on other
entities.

Finally, the regulatory apparatus in place in many
states, especially the U.S., privileges standards for the
defense of networks and information systems rather than
holding liable the manufacturers of software and hard-
ware in place on these networks. Milware takes advan-
tage of this status quo by prioritizing the acquisition and
maintenance of access to targeted systems for long peri-
ods of time over deploying particular effects at frequent
intervals. The continued vulnerability of most major
software families presents a less cost intensive and more
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obscured operational pattern to enable less frequent but
more substantial intrusions rather than engaging in small
but regular attacks.

States are daring software vendors to build better soft-
ware with the expectation that they can continue to beat
information security vendors and existing security prac-
tices at the network and system level. Malware, dis-
tributed by individuals and non-state actors, prioritizes
effects over access the particular machine compromised
by an infection is less consequential than the successful
execution of code to bring about the manipulation or data
exfiltration desired. This is because most malware targets
certain resource types within vast networks, banking cre-
dentials or PII, rather than the data tied to an individual.
Milware, by contrast, is concerned with access to more
narrowly tailored targets and particular pieces of infor-
mation.

7 Future Work

Using a limited set of samples, this paper develops the
MASS index, a metric to systematically differentiate
state and non-state authored malicious software based
on the pattern of propagation to and within targets, the
CVSS score and 0day frequency, and the degree of pay-
load tailoring to a particular target. This is a pilot project
however and so is limited in the scope and scale of data
collection and the sophistication of methodologies in use.
In order to develop a more robust version of the MASS
Indexand further extend and support the conclusions of
this paper, we identify two possible (non-exclusive) di-
rections for future work.

The first involved taking a large-N approach, analyz-
ing an additional 30-40 milware and 100-150 malware
samples. This would allow for more rigorous empirical
scholarship, integrating a wider array of target types and
styles of code authorship. An alternative involves map-
ping code lineage, seeking to understanding what dis-
tinguishes the evolution of state and non-state authored
malware over time. By collecting as many directly re-
lated samples as possible of 3-5 variants, both state and
non-state authored we can use these lineage maps to
mark changes in exploit and feature selection and con-
sider how these changes interact with the previously es-
tablished MASS Indexcriteria.

In addition, we acknowledge that the term milware
obfuscates other distinctions between state developed
code, especially differences in the organizational struc-
ture and culture responsible for deploying code for na-
tional strategic effect, tactical battlefield use, and espi-
onage. While these three sub-categories of milware each
posses a distinct function, there is analytic utility ob-
tained from mapping their broad similarities and differ-
ences with malicious code developed by non-state ac-

tors. Exploring the individual differences between each
of these sub-categories and malware would present an
interesting extension of this work.

8 Conclusion

Malicious software has long been used to describe a
range of threats. From the trope of basement bound
teen-aged hackers clutching Mountain Dew to the mod-
ern, much marketed, Advanced Persistent Threat, broad
overuse of the term malware has impacted researchers
ability to specify the range and variety of threats in the
information security space. The idea of state authored
code, milware, as a separate category highlights a set of
challenges to the existing legal architecture and security
research paradigm which are fundamentally oriented to
combat individuals and organizations.

Through the MASS Index, this paper has described
a rudimentary new means to differentiate between state
and non-state authored code. Highlighting the implica-
tions of milware as a new category of code, we find sev-
eral conventional assumptions in place for information
security which should be subject to careful review and
potential revision. Milware constitutes a new class of
malicious software whose priorities, as a tool of state in-
fluence, and sophistication are different from code em-
ployed by non-state groups. By failing to make a distinc-
tion between milware and malicious code written by non-
state actors, the information security community con-
flates the capabilities and intentions of criminal groups
with those of states, degrading the ability to successfully
adapt and respond to either.
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