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Abstract. In this paper, we study the problem of differentially-private
learning of low dimensional manifolds embedded in high dimensional
spaces. The problems one faces in learning in high dimensional spaces are
compounded in differentially-private learning. We achieve the dual goals
of learning the manifold while maintaining the privacy of the dataset
by constructing a differentially-private data structure that adapts to the
doubling dimension of the dataset. Our differentially-private manifold
learning algorithm extends random projection trees of Dasgupta and
Freund. A naive construction of differentially-private random projection
trees could involve queries with high global sensitivity that would af-
fect the usefulness of the trees. Instead, we present an alternate way of
constructing differentially-private random projection trees that uses low
sensitivity queries that are precise enough for learning the low dimen-
sional manifolds. We prove that the size of the tree depends only on the
doubling dimension of the dataset and not its extrinsic dimension.

1 Introduction

Many real world datasets are measured at extremely high dimension. Analyz-
ing datasets in high dimension affects learning algorithms in many ways. Most
of the existing algorithms have time complexities that are super-polynomially
dependent on the dimension of the dataset. Some algorithms need enormous
amounts of data to obtain meaningful results in high-dimensional spaces. This
phenomenon is referred to as the curse of dimensionality in the machine learning
literature. One way to address this is through dimensionality reduction (Bishop
(2006); Cox and Cox (2000)). In many cases, although a data set may have ap-
parent high dimensionality, the data actually might lie on a low dimensional
manifold.

Non-linear dimensionality reduction techniques (Lee and Verleysen (2007))
provide ways to construct mappings from the given high dimensional
spaces into the low dimensional manifolds in which the data actually lie.

S. Jain et al. (Eds.): ALT 2013, LNAI 8139, pp. 249–263, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



250 A. Choromanska et al.

Dasgupta and Freund (2008) analyzed the technique presented by Freund et al.
(2007), to learn the structure of a manifold that has low dimension d but for
which the data lies in R

D , with d � D . This involves the construction of a data
structure called a random projection tree (RP tree), formed by hierarchically
partitioning R

D into subregions. The height of the RP tree constructed using
random projections depends only on the doubling dimension of the dataset.
Kpotufe (2009) used RP tree to construct a tree based regressor whose conver-
gence rate depends only on the intrinsic dimension of the data.

In this paper, we study the problem of differentially-private learning of low
dimensional manifolds. Differential privacy is a privacy model introduced by
Dwork et al. (2006) in a quest to achieve the dual goal of maximizing data util-
ity and preserving data confidentiality. A differentially-private database access
mechanism preserves the privacy of any individual in the database, irrespec-
tive of the amount of auxiliary information available to an adversarial database
client. The model is described in more detail in Section 4. The problems one faces
in learning in high dimensional spaces are compounded in differentially-private
learning. Differentially private data analysis needs more data than its non-private
counterpart to achieve a comparable amount of accuracy. The amount of data
required in high dimensional space for a differentially private learning becomes
exorbitant.

2 Our Contribution

In this paper, we focus on data of low doubling dimension as was considered
by Dasgupta and Freund (2008). We give a differentially-private manifold learn-
ing algorithm that constructs a differentially-private data structure that depends
only on the doubling dimension of the data. Our algorithm extends the random
projection tree to the differentially-private setting. A naive way of constructing a
differentially-private RP tree would be to replace non-private data access in the
RP tree construction algorithm with an interactive mechanism for differentially-
private access to the dataset. However, such a construction involves queries with
high global sensitivity which results in a substantial reduction in the accuracy
of the constructed RP trees. The reason for that is that the non-differentially
private algorithm for constructing random projection trees computes the median
and this query is highly sensitive. To achieve the desired level of differential pri-
vacy in the straightforward approach a significant noise must be added to each
result. That noise dramatically reduces the quality of the constructed random
projection tree. We circumvent this issue by constructing a RP tree using low
sensitivity queries. We prove that our differentially private RP tree algorithm
adapts to the doubling dimension of its input just as the non-private algorithm of
Dasgupta and Freund (2008). Our algorithm, as well as the algorithm presented
by Dasgupta and Freund (2008), is exponential in the doubling dimension d and
its sample complexity scales with the square root of the extrinsic dimension D.
To the best of our knowledge, this is the first work addressing the curse of di-
mensionality problem in the differential privacy model using random projection
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trees. Our work is theoretical and we do not optimize constants appearing in
the algorithm. However, we emphasize that with more calculations (tedious but
not hard) most of them may be significantly improved to make the algorithm
applicable in the real-life scenarios.

3 Related Work

Thedesire tomaximize data utilitywhile preserving the confidentiality of individu-
als in adatabasehas led to theproposal of anumber ofprivacymodels includingper-
turbation methods (Adam and Worthmann (1989); Agrawal and Srikant (2000)),
k-anonymity and its variants (Samarati and Sweeney (1998); Sweeney (2002)) and
securemultiparty computation (Goldreich(2004); Lindell and Pinkas (2002)).The
weakness of these privacy models have also been well studied (Ganta et al. (2008);
Brickell and Shmatikov (2008)). The differential privacy framework introduced by
Dwork et al. (2006) offers strong privacy guarantees for every individual in the
database irrespective of any auxiliary information that is available to the database
client. Following the work of Dwork et al. (2006) significant amount of work has
been done in this area and most of them are surveyed by Dwork (2008, 2009, 2010,
2011).

Learning algorithms have also been studied under the differential privacy
model. Various private data mining algorithms such as PCA, k-means cluster-
ing, ID3 are presented in a privacy model called SuLQ (Blum et al. (2005)),
which is a predecessor of differential privacy. Ignoring computational con-
straints, Kasiviswanathan et al. (2008) showed that anything which is PAC-
learnable is also differentially-private PAC-learnable. Building upon their tech-
nique, Blum et al. (2008) showed a way of constructing a synthetic database
useful in any concept class with polynomial VC-dimension. Their construction
is computationally inefficient. Chaudhuri et al. (2011) showed that it is pos-
sible to obtain differentially-private empirical risk minimization algorithms by
perturbing their objective functions. Feldman et al. (2009) gave an algorithm for
computing differentially private coresets that could answer k-median and k-mean
queries in R

d. The size of the released dataset is unreasonably large for most
values of d. Jagannathan et al. (2009) presented a differentially private classifier
based on random decision trees. Their algorithm achieves good accuracy even for
small datasets. Friedman and Schuster (2010) presented a differentially private
ID3 algorithm that gives better accuracies than the straightforward construc-
tion of a differentially private ID3 tree. Recently, Chaudhuri and Hsu (2011) an-
alyzed the sample complexity bounds for differentially-private learning. To the
best of our knowledge our paper is the first one that addresses the problem of
the construction of differentially-private random projection trees. However there
are several papers where differentially-private constructions of other important
structures are presented. Cormode et al. (2011) consider the problem of differ-
entially private release of sparse data. Chaudhuri et al. (2012) investigated the
performance of differentially private principal component analysis which is used
for dimensionality reduction. Finally, very recently Kapralov and Talwar (2013)
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presented an algorithm that outputs a differentially-private approximation to the
principal eigenvector of a given symmetric matrix. Differential privacy has been
also studied in the online learning context (see for example: Jain et al. (2012)).
Another interesting setting involves scenario, where the access to the training
features is only through a kernel function (see: Jain and Thakurta (2013)).

4 Preliminaries

Differential privacy is a model of privacy for database access mechanisms. It
captures a notion of individual privacy by assuring that the removal or addition
of a single item (i.e., an individual’s record) in a database does not have a
substantial impact on the output produced by the mechanism. Two databases
D1 and D2 differ on at most one element if one is a proper subset of the other
and the larger database just contains one additional row.

Definition 1 (Dwork et al. (2006)). A randomized algorithm M satisfies
ε-differential privacy if for all databases D1 and D2 differing on at most one
element, and all S ∈ Range(M), Pr[M(D1) = S] ≤ exp(ε) · Pr[M(D2) = S].
The probability is taken over the coin tosses of M.

Smaller values of ε correspond to closer distributions, and therefore higher
levels of privacy. Let f be a function on databases with range R

m . A now-
standard technique by which a mechanism M that computes a noisy version
of f over a database X can satisfy ε-differential privacy is to add noise from
a suitably chosen distribution to the output f (X ). The magnitude of the noise
added to the output depends on how much change in f , can be caused by a single
change to the database, defined as follows:

Definition 2 (Dwork et al. (2006)). The global sensitivity of a function f
is the smallest number S(f ) such that for all D1 and D2 which differ on at most
one element, ‖ f (D1)− f (D2) ‖1≤ S(f ).

Let Lap(0, λ) denote the Laplace distribution with mean 0 and standard de-
viation λ.

Theorem 1 (Dwork et al. (2006)). Let f be a function on databases with
range R

m . Then, the mechanism that outputs f (X )+ (Y1, . . . , Ym), where Yi are
drawn i.i.d from Lap(0, S(f)/ε), satisfies ε-differential privacy.

Using this method, smaller values of ε imply that more noise is added when the
results are returned. The following theorem shows that differential privacy is
robust under composition, but with an additional loss of privacy for each query
made.

Theorem 2 ((Dwork et al., 2006)). (Composition Theorem) The sequen-
tial application of mechanisms Mi, each giving εi-differential privacy, satisfies∑

i εi-differential privacy.
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We first introduce some notation we will be using throughout the paper. Let
X ⊆ R

D be the dataset on which differentially-private RP tree is built. Let
us assume that X lies within a hypercube with the center at (0, 0, . . . , 0) and
side length �. We assume � is public. For any point x ∈ R

D and any r > 0, let
B(x, r) = {z : ‖x− z‖ < r} denote the open ball of radius r centered at x. The
radius of a cell A ⊂ R

D is the smallest r > 0 such that X ∩A ⊂ B(x, r) for some
x ∈ A or x ∈ X . We denote diam(A) to be the diameter of A which is twice the
radius r. Let I be an interval that is divided into n equal subintervals I1, . . . , In.
We denote I = I1 ∪ . . . ∪ In as I = I1...In.

5 Random Projection Trees: An Overview

A random projection tree (Dasgupta and Freund (2008)) is a variant of a k-d
tree. k-d trees partition the space R

D into hyperrectangular cells by splitting
along one coordinate at each node of the tree. Although simple in construc-
tion, they suffer from the ”curse of dimensionality,” as do many nonparamet-
ric statistical methods. The trees become less useful as the dimension, D , in-
creases. Dasgupta and Freund (2008) showed that there is a dataset in R

D for
which a k-d tree requires D levels in order to halve the cell diameter.

However, there are many datasets that appear to lie in very high dimensional
space, but actually lie in a low dimensional manifold. In order to address this
situation, Dasgupta and Freund (2008) gave a variant of the k-d tree named ran-
dom projection tree that adapts to the low dimensional structure of the dataset
without having to explicitly learn the structure. The random projection tree is
also a spatial data structure built by recursively splitting the data space. At each
node of the tree, a direction is chosen at random from a unit square in R

D and
the subset of data points at each node are projected on the chosen random di-
rection. Instead of choosing the median of these projected points as the split, the
RP tree algorithm involves adding a small amount of “jitter” and the split point
is chosen at random from the jitter centered at the median. Algorithm 1 shows
the construction of the random projection tree as given by Dasgupta and Freund
(2008). They proved a bound on the rate at which the radius of cells in an RP
tree decreases as one moves down the tree.

Definition 3. The doubling (or Assouad) dimension of the set S ⊂ R
D is the

smallest integer d such that for any ball B(x, r) ⊂ R
D , the set B(x, r) ∩ S can

be covered by 2d balls of radius r/2.

The following theorem is the main ingredient of the proof that random pro-
jection tree constructed in Dasgupta and Freund (2008) is of good quality. We
will obtain similar result for a differentially-private random projection tree con-
structed by us in this paper.

Theorem 3 (Dasgupta and Freund (2008)). There is a constant c with the
following property: Suppose an RP tree is built using the dataset X ∈ RD. Pick
any cell C in the RP tree. Suppose X ∩C has doubling (or Assouad) dimension
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d. Then, with probability at least 1/2, for every descendant C′ which is more
than c log d levels below C, we have radius(C′) < radius(C).

Algorithm 1. RP Tree Algorithm [Dasgupta and Freund (2008)]

Algorithm MakeTree
Input: X, the data set,
Output: A decision tree

if |X | < MinSize then
return (Leaf)

else
Rule←ChooseRule(X )
LeftT ree←MakeTree({x ∈ X : Rule(x) = true})
RightT ree←MakeTree({x ∈ X : Rule(x) = false})
return ([Rule, LeftT ree,RightT ree])

end if

Subroutine ChooseRule(X )

choose a random unit direction v ∈ RD

pick any point x ∈ X , and let y be the farthest point from it in X
choose s uniformly at random in [−1, 1] · 6||x− y||/√D
Rule(x) := x · v ≤ (median({z · v : z ∈ X }) + s)
return (Rule)

6 Differentially-Private Random Projection Tree

In this section, we describe our algorithm for constructing a differentially-private
RP tree. Our algorithm (Algorithm 2) is a non-trivial modification of the RP tree
algorithm given by Dasgupta and Freund (2008). We will start from presenting
some definitions that are relevant to our construction of the differentially-private
RP tree and in proving that our differentially-private RP tree adapts to the
doubling dimension.

Definition 4. A set X of N points and diameter Δ is (η,W )-dense if at least
(1− η)N points of X are within a ball of radius Δ

W .

Definition 5. Consider a sequence of real numbers (β1, ..., βn) where each βi is
associated with an interval Ii and let Np =

∑n
i=1 βi. For a constant 0 < g < 1,

we say that the interval I = I1, I2, ...It is g-good if the following holds:
∑t

i=1 βi ≥
(1− g)Np.

Definition 6. A set X of diameter Δ and doubling dimension d is (T, ρ, f)-
good if there exist two balls B1(c1, r1) and B2(c2, r2) with radii r1, r2 <

w
ρ
√
d
and

|c1 − c2| = w ≥ Δ
T , such that each of the balls contains at least f |X | of all the

points from X .
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Algorithm 2. Differentially Private RP Tree Algorithm (DP-RPtree)

Algorithm MakeDPRPTree
Input: X , the data set, h, the height of the

current node, constants K and g < 1/2
Output: A decision tree

if h > MaxTreeHeight then
return (Leaf)

else
Rule←ChooseDPRule(X )
LeftT ree←MakeDPRPTeee({x ∈ X : Rule(x) = true, h+ 1})
RightT ree←MakeDPRPTeee({x ∈ X : Rule(x) = false, h+ 1})
return ([Rule, LeftT ree,RightT ree])

end if

Subroutine ChooseDPRule(X )

radius←ChooseRadius(X )
R← K · radius
choose random direction U
M ←ComputeMedian(X , U)
choose s uniformly at random in [−6.6, 6.6] · 2 ·R
return (Rule(x) := x · U ≤M + s)

Subroutine ChooseRadius(X )

radius← 0
for i ∈ {1, . . . , 14} do

choose random direction U
M ←ComputeMedian(S,U)
find R = min{mδ : [M −mδ,M +mδ] is g-good}
if radius < R then

radius← R
end if

end for
return (radius)

Subroutine ComputeMedian(X ,U)

partition [−L/2, L/2] into n segments
let I1, . . . , In denote the segments and mi = |{xi ∈ X : U · x ∈ Ii}|
choose pi ∼ Lap(0, 1/λ) and N ←

n∑

i=1

(mi + pi)

if N < 0 then
pick a 1 ≤ j ≤ n uniformly at random

else

find j such that

j−1∑

i=1

(mi + pi) ≤ 1

2
N and

j∑

i=1

(mi + pi) ≥ 1

2
N

end if
return left end point of Ij
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Before describing our algorithm, we will first explain a naive conversion of the
RP tree algorithm of Dasgupta and Freund (2008) into a differential privacy-
preserving mechanism that does not yield trees that are good representatives of
the dataset. A straightforward way of constructing a differentially-private RP
tree is by replacing each database access in the non-private algorithm with a
differentially private query. By applying Theorem 2, one can show that such a
construction is differentially-private. The following computations in the proce-
dure ChooseRule(X ) in Algorithm 1 require access to the database:

– pick any point x ∈ X and compute the distance between the point x to the
farthest point y ∈ X . This distance is used to estimate the data diameter of
X .

– Rule(x) := x · v ≤ (median({z · v : z ∈ X }) + s) where s is chosen uniformly
at random.

One can replace both the diameter and the median computations with differ-
entially private diameter and median computations (Dwork et al. (2006)). The
direct way of doing this is by computing the median and the diameter of the input
dataset S, and then adding an appropriate noise term chosen from a Laplace dis-
tribution, using a parameter that is linearly dependent on the global sensitivity
of these queries. However, both median and diameter have high global sensi-
tivity. This substantially impacts the precision of the differentially-private me-
dian and diameter computations. The trees built from them can be correspond-
ingly poor. One could use the exponential mechanism of McSherry and Talwar
(2007) to compute differentially-private median. However, the exponential mech-
anism provides a good split with constant probability only if the data is not
skewed (Cormode et al. (2012)). The differentially private median computed us-
ing smooth sensitivity (Nissim et al. (2007)) offers a weaker privacy guaran-
tee (ε, δ)-differential privacy than the standard differential privacy model. The
Propose-Test-Release mechanism proposed by Dwork and Lei (2009) also pro-
vides (ε, δ)-differential privacy. Further, it is unclear how any of these mecha-
nisms, when used directly in the algorithm, can be proved to provide useful upper
bounds on the depth of the differentially-private random projection tree. Hence,
in this paper we present a procedure to compute approximations to the median
using only low sensitivity count queries. We use a much weaker assumption on
the density of the data, namely, that the data is not entirely concentrated in
a very small neighborhood. Note that even though our algorithm divides inter-
vals into equal sized segments, the analysis makes no additional assumptions
regarding the distribution of the data.

In our construction, we avoid these high-sensitivity queries by computing ap-
proximations to the median and the diameter that are precise enough for our
purposes of finding a low-dimensional manifold. We describe below the two pro-
cedures that involve computing the approximate median and the approximate
data diameter. The differentially-private random projection tree construction is
given in Algorithm 2. We denote this tree as DP-RPtree. The algorithm is
parametrized by scalars g and K. The appropriate way of choosing them will be
explained later in the paper.
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6.1 Computing an Approximate Median

We assume that all data is taken from the D-dimensional box with center
(0, 0, ..., 0) and edges of length �, where � is public. Let C denote the cell that
needs to be partitioned. Let X ∩C be the set of data points in the cell C. First,
we choose a random unit vector U ∈ R

D . The projection of any data point in
X ∩C onto the unit vector U lies in the segment [−L

2 ,
L
2 ] where L = 2

√
(�/2)2D.

Since both � and D are public, L is also public. We partition the segment [−L
2 ,

L
2 ]

into n subsegments, Ii, 1 ≤ i ≤ n. Denote the length of each subsegment by δ
(we have: δ = L

n ). We call δ a precision parameter. Both n and δ are public.
We compute differentially private counts of the projected points βi that fall into
these subregions Ii. We use these counts to estimate an approximate median
of the projection of X ∩ C. The approximate median is defined as the left end
of the subsegment Ij where

∑j−1
i=1 βi ≤ 1

2

∑n
i=1(βi) but

∑j
i=1 βi ≥ 1

2

∑n
i=1 βi

for Np =
∑n

i=1 βi ≥ 0. For Np ≤ 0 the median is defined as an arbitrary end-
point of an arbitrary subsegment Ii. In other words, the left endpoint of the
lowest numbered subregion for which at least half the projected points lie to
the left is our approximate median. Since our application uses noisy counts of
projected points, βi can be negative for some i. Hence, the perturbed median is
not uniquely defined even for Np > 0. However there exists at least one median.
This is described in procedure ComputeMedian(X ) in Algorithm 2. We refer
to the median defined above as the perturbed median.

6.2 Computing an Approximate Diameter

Now, we describe briefly the procedure that computes an approximate data
diameter. Here we choose 14 unit vectors {U1, . . . , U14} ⊂ R

D at random from
the Gaussian distribution. It turns out that to prove the correctness of our
algorithm we indeed need at least 14 Gaussian vectors. Since this is due to
some highly technical reasons and we now try to provide a general view of our
algorithm, we will not explain it more exhaustively at this moment but it will be
justified later in the paper. We first compute the approximate medians projected
onto the chosen vectors. For each Ui we find the smallest portion of the segment
[−L

2 ,
L
2 ] around the median such that the subsegment is g-good for a suitable

parameter 0 < g ≤ 1. Parameter g should be small enough for the algorithm to
work (how small it should will be shown later). Thus in every trial we find some
subsegment. We choose the longest subsegment among 14 that were found. This
is described in procedure ChooseRadius(S) in Algorithm 2.

The following theorem shows that random projection tree constructed by our
algorithm is differentially private.

Theorem 4. DP-RPtree is 14hλ differentially-private where h is the height
of the tree and λ is the differentially-private parameter.

Proof. Let A denote the differentially-private random projection tree algorithm.
To construct a random projection tree of height h we need 14h queries to the pri-
vate data. Each time we obtain a vector of differentially-private counts which is of
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global sensitivity 1 (according to Theorem 1). Therefore, using the Composition
Theorem, one can now show that DP-RPtree is 14hλ-differentially-private.

Thus we only need to analyze the quality of the random projection tree con-
structed by our algorithm. We will focus on that in the remaining part of the
paper.

7 Differentially-Private RP Trees Adapt to Doubling
Dimension

In this section we state and prove our main result, that the height of the
differentially-private random projection tree depends only on the doubling di-
mension of the dataset and the privacy parameter. This section is organized as
follows: first we state the main theorem (Theorem 5) and also a slightly stronger
result (Theorem 6) that implies the main theorem, then we we provide a brief
outline of the proof and finally we show all the lemmas and technical proofs that
led to the presented results.

7.1 Main Theorem

Let X ⊆ R
D be the dataset of doubling dimension d on which the DP-RPtree

is built. Let A denote a cell of the RP tree. By ρA we denote the average density
of A (i.e the ratio of the number of data points in A over the volume of A). We
prove that, with high probability, every descendant of a cell C which is O(d log d)
levels below has half the radius of C.

Theorem 5. Let X ⊆ RD and λ denote the differential-privacy parameter. Pick
any cell A of the differentially-private RP tree. Suppose X ∩ A has doubling
dimension ≤ d, has diameter 2Δ and contains N points. Assume that there is no

ball of a positive radius in X ∩A whose density is greater than WD

2 ρA, where W

is a positive constant and N = Ω( e
2dd

d
2 n log2(n)

λ ) for n = L
δ . Assume furthermore

that algorithm parameters g and δ are small enough and K = 400W . Then the
probability that there exists a descendant of A which is more than Ω(d log(d))
levels below and has radius at least Δ

2 is at most 1
2 .

This theorem shows that our algorithm achieves a similar reduction in size of
the data diameter of the cell, as was achieved by Dasgupta and Freund (2008)
while preserving differential privacy. Note that the smaller the precision param-
eter δ, the bigger n and thus we need more data points in the theorem. This
agrees with our inuition since smaller length δ of the subsegment affects the
privacy guarantees and therefore to obtain the same type of differential-privacy
we need more points.

In fact, we prove slightly stronger result than Theorem 5. This result is stated

in Theorem 6 that we now provide. Let ν(x) = (λx)n

exp (λx) and ψn
λ is the inverse of

ν(x), defined on [nλ ,∞].
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Theorem 6. Let X ⊆ RD and λ denote the differential-privacy parameter. Pick
any cell A of the differentially-private RP tree. Suppose X ∩ A has doubling
dimension ≤ d, has diameter 2Δ and contains N points. Assume that the set
X ∩A is not (η,W )-dense for some constant W , where 0 ≤ η ≤ 1 and

N > max(ζ1, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7, ζ8),

where ζ1 = 20n
3λ , ζ2 = 8n

fλ , ζ3 = 4n
(1−f)λ , ζ4 = 16

λf , ζ5 = ψn
λ(

5
3ne15 ), ζ6 =

ψn
λ(

8
fn2e31 ), ζ7 = ψn

λ(
8

fe15 ), ζ8 = ψn
λ(

1
(1−f)ne15 )), n = L/δ and f = η

CMd for

M = 130e2
√
d and some constant C. Denote T = (1+ 2e2√

d
)W . Assume that con-

stants δ, g,K from the Algorithm 2 satisfy: g < η
2C ( 1

130e2T
√
d
)d, ζ9 > K > 2e2T

for ζ9 = 0.00094e31

18(
√

30+2 log( 2C
η )+2d log(130e2T

√
d)+2δ)

and δ ≤ 0.1Δ√
D
. Then the probability

that there exists a descendant of A which is more than Ω(d log(d)) levels below
and has radius at least Δ

2 is at most 1
2 .

Theorem 6 implies Theorem 5 as follows: If X ∩A is (η,W )-dense then there
exists a ball B of radius Δ

W that contains all but at most ηN points of the

data. So the average density inside this ball is at least WD

2 ρA. Taking η = 1
2

and simplifying the lower bound on the number of data points N, we prove
Theorem 5.

We give here a brief outline of the proof of Theorem 6 (the formal proof can

be found in the extended version of the paper). We cover X∩A by Nb = O(
√
d
d
)

balls each of radius Δ/
√
d. We prove that if we pick any two balls from Nb that

are separated by a distance of at least (Δ/2)−(Δ/(512C
√
d)) then with constant

probability a split point carefully chosen using a constant number of random
projections separates the two balls. We also show that any pair of balls that are
separated by a distance of at least (Δ/2) − (Δ/(512C

√
d)) are separated after

O(d log d) levels with probability at least 1/2. Hence each cell contains points
that are within a distance (Δ/2) − (Δ/(512C

√
d)) of each other thus proving

that the radius(X ∩ A)≤ Δ/2.
Although superficially the outline of our proof looks similar to the one in the

work of Dasgupta and Freund (2008), we emphasize that both proofs substan-
tially differ in details. This is because our DP-RPtree construction satisfies
the dual constraints of privacy and adaptation to the doubling dimension of the
dataset. Our tree construction, unlike the one proposed by Dasgupta and Freund
(2008), uses approximate median and diameter. The difficulty lies in proving
that the approximate median and the diameter used in the construction of the
DP-RPtree are precise enough to learn the structure of the low dimensional
manifold.

In the Appendix we present some properties of the perturbed median and of
the split, used in the proof of the main result and the proof of the main result.
Missing proofs of the technical results may be found in the extended version of
the paper.
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8 Appendix

Properties of the Perturbed Median

In our paper, we are required to compute a differentially-private median. As
explained in Section 6, instead of computing a differentially-private median in
a traditional way which involves computing the median and then adding appro-
priate Laplacian noise, we compute approximations to the medians.

1. If an interval I in the projected line contains only a small fraction of projected
points of X , then I also contains only a small fraction of differentially-private
count of projected points and vice-versa.

2. The perturbed median M lies close to x̂0, where x̂0 is the projection of the
center of the ball B(x0, Δ) (consequence of Lemma 3).

3. If an interval contains 1 − g fraction of projected points, then the per-
turbed median lies within that interval with high probability (consequence
of Lemma 4).

The above properties are the direct consequences of the technical lemmas that
we will provide now.

Lemma 1. Let {l1, ..., ln} be a family of independent Laplace random variables

L(0, 1/λ). Then for any W > 2
λ we have: P [l1 + ...+ ln ≥W ] ≤ (λW )n

eλW .

Lemma 2. Fix some constants 0 < h, h
′
< 1 such that h + h

′
< 1. Fix some

interval Int = Ij+1, ..., Ij+t for some j, t, where t ≥ 1. Assume that interval Int
contains at least a fraction (1 − h) of all N projected points, where N > 4

λh′ .

Then with probability at most ν( h
′
N

2(1−h−h′ ) ) + ν(h
′
N
2 ) we have:

t∑

i=1

(m(j + i) + p(j + i)) ≤ (1 − h− h
′
)

n∑

i=1

(m(i) + p(i)),

where each p(i) ∼ L(0, 1/λ).

Lemma 3. Let A ⊂ R
D is contained in the ball B(x0, Δ). Let |A| = N , where

N > 40
3λ . Then with probability at least 1−( 1

20+2n(ν(3N20 )+ν(
3N
10 ))) the perturbed

median M is within distance (3.1+2δ)Δ√
D

from x̂0 where δ = L/n.

Proof. It can be proven that with probability at least (1− 1
20 ), all but at most a

1
5 -fraction of all the projected data points are within an interval Int of center x̂0
and radius 3.1Δ√

D
. Let Ij , . . . , Ij+k be the smallest sequence of interval segments

that contain Int. Let a and b be the left and the right-ends of Ij , . . . , Ij+k. Let

E be the event that M is not within distance (3.1+2δ)Δ√
D

from x̂0. If E holds

then either M ≤ a or M ≥ b. In both cases, there exists some interval I =
I1, I2, ..., Ik or I = Ik, Ik+1, ..., In for some k ∈ {1, 2, ...n} such that I ∩ Int = Φ
and

∑
s:Is⊆I(m(s) + p(s)) ≥ 1

2

∑n
i=1(m(s) + p(s)). This holds with probability

at most ν(3N20 ) + ν(3N10 ) by choosing h = 1
5 and h

′
= 3

10 , where N > 4
λh′ . Since

there are at most 2n intervals of the form I, the proof follows using union bound.
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Lemma 4. Assume that the interval I = Ij+1, ..., Ij+t contains all but at most
a fraction g

2 of all N data points for some constant g < 1
2 . Then with probability

at least 1 − 2n(ν((12 − g)N) + ν(
( 1
2−g)N

2 )) the perturbed median M is within
I∗ = IjIj+1, ..., Ij+t.

8.1 Properties of the Split

Given two balls Bi, Bj we say that a split is good if it completely separates them.
A split is bad if the split point intersects both the balls. The remaining splits
are called neutral.

Lemma 5. Let X ⊆ B(x0, Δ) have doubling dimension d ≥ 1.
Let X be (T, ρ, f)-good for ρ > 65e2, T = (1 + 2e2/

√
d)W and

N > max(ζ1, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7, ζ8)

, where ζ1 = 20n
3λ , ζ2 = 8n

fλ , ζ3 = 4n
(1−f)λ , ζ4 = 16

λf , ζ5 = ψn
λ(

5
3ne15 ), ζ6 =

ψn
λ(

8
fn2e31 ), ζ7 = ψn

λ(
8

fe15 ), ζ8 = ψn
λ(

1
(1−f)ne15 )), n = L/δ with δ ≤ 0.1Δ√

D
. Assume

that 0.00094e31

18V > K > T
1
e2

− 65
ρ

. Let C =
√
V ·K, where V = 2(

√
2 log( e

15

g ) + 2δ)

and g = 1
2f is a constant as described in Algorithm 2. Pick any two balls B =

B(z, r) and B
′
= B(z

′
, r) such that (i) their centers z and z

′
lie in B(x0, Δ),

(ii) the distance between these centers is at least 1
2Δ − r and (iii) the radius

r is at most Δ

512C
√
d
. Choose a split point according to the rule ChooseRule in

Algorithm 2. Let pl denote the probability that X
⋂
B and X

⋂
B

′
will completely

be contained in separate halves of the split and pu be the probability that the split
point intersects both X

⋂
B and X

⋂
B

′
. Then pd = pl−2pu ≥ 0.00094

VK − 18
e31 > 0.

The probabilities are taken over the choice of random directions U .

8.2 Proof of the Main Theorem

Proof of Theorem 6: CoverX∩A by balls of radius r = Δ/(512C
√
d), where

C is a constant defined in Lemma 5. Since X∩A has doubling dimension d, X∩A
is covered by at most Nb = (O(d))d balls. Fix any pair of balls B, B

′
from this

cover whose centers are at distance at least Δ
2 − r from one another. Let pk be

the probability that there exists some cell k levels below A which contains points
from both B and B

′
(k = 1, 2, ...). Let pl and pu be the probabilities defined in

Lemma 5. To apply Lemma 5, first we need to prove that if X ∩A is not (η,W )-
dense then X ∩ A is (T, ρ, f)-good. We do it the following way: cover X ∩ A by
CMd balls, each of radius Δ

M whereM = 130e2T
√
d. There exist at least one ball

that contains at least N
CMd points. Denote this ball by B1(x0,

Δ
M ). Consider all

balls with centers outside B2. If those balls together contain at most ηN points
then at least (1−η)N points are within ball B3(x0,

Δ
T + Δ

M ) implying that X∩A
is (η,W )-dense, which is a contradiction. So the balls with centers outside B2

contain altogether at least ηN points. One of them, denote it by B4, contains
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at least η
CMdN points. Let f = η

CMd , ρ = M
T
√
d
. Using balls B1 and B4 we can

conclude that X ∩ A is (T, ρ, f)-good. Now, we are ready to apply Lemma 5. It
follows from Lemma 5 that for k > 1: pk ≤ pl · 0 + pu · 2pk−1 + (1 − pl) · pk−1

and pk ≤ wpk−1, where 0 < w = (1 − (pu − 2pl)) < 1. Thus for some constant
c
′
and k = c

′
d log(d), we have pk ≤ 1

N2
b
. Taking the union bound over all pairs

of balls from the cover which are at the prescribed minimum distance from each
other completes the proof.
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