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ABSTRACT
Authorization logics have been used in the theory of com-
puter security to reason about access control decisions. In
this work, a formal belief semantics for authorization logics
is given. The belief semantics is proved to subsume a stan-
dard Kripke semantics. The belief semantics yields a direct
representation of principals’ beliefs, without resorting to the
technical machinery used in Kripke semantics. A proof sys-
tem is given for the logic; that system is proved sound with
respect to the belief and Kripke semantics. The soundness
proof for the belief semantics, and for a variant of the Kripke
semantics, is mechanized in Coq.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls; F.4.1 [Mathematical Logic and Formal

Languages]: Mathematical Logic—modal logic, model the-
ory, proof theory, mechanical theorem proving

Keywords
Authorization logic; NAL; CDD

1. INTRODUCTION
Authorization logics are used in computer security to rea-

son about whether principals—computer or human agents—
are permitted to take actions in computer systems. The dis-
tinguishing feature of authorization logics is their use of a
says connective: intuitively, if principal p believes that for-
mula φ holds, then formula p says φ holds. Access control
decisions can then be made by reasoning about (i) the be-
liefs of principals, (ii) how those beliefs can be combined to
derive logical consequences, and (iii) whether those conse-
quences entail guard formulas, which must hold for actions
to be permitted.

Many systems that employ authorization logics have been
proposed [5–9, 11, 12, 17, 23, 28, 29, 32–35, 40, 44, 51], but few
authorization logics have been given a formal semantics [4,
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18, 19, 22, 26]. Though semantics might not be immediately
necessary to deploy authorization logics in real systems, se-
mantics yield insight into the meaning of formulas, and se-
mantics enable proof systems to be proved sound—which
might require proof rules and axioms to be corrected, if there
are any lurking errors in the proof system.

For the sake of security, it is worthwhile to carry out such
soundness proofs. Given only a proof system, we must trust
that the proof system is correct. But given a proof system
and a soundness proof, which shows that any provable for-
mula is semantically valid, we now have evidence that the
proof system is correct, hence trustworthy. The soundness
proof thus relocates trust from the proof system to the proof
itself—as well as to the semantics, which ideally offers more
intuition about formulas than the proof system itself.

Semantics of authorization logics are usually based on pos-
sible worlds, as used by Kripke [31]. Kripke semantics posit
an indexed accessibility relation on possible worlds. If at
world w, principal p considers world w′ to be possible, then
(w,w′) is in p’s accessibility relation. We denote this as
w ≤p w

′. Authorization logics use Kripke semantics to give
meaning to the says connective: semantically, p says φ holds
in a world w iff for all worlds w′ such that w ≤p w

′, formula
φ holds in world w′. Hence a principal says φ iff φ holds in
all worlds the principal considers possible.1

The use of Kripke semantics in authorization logic thus
requires installation of possible worlds and accessibility re-
lations into the semantics, solely to give meaning to says.
That’s useful for studying properties of logics and for build-
ing decision procedures. But, unfortunately, it doesn’t seem
to correspond to how principals reason in real-world systems.
Rather than explicitly considering possible worlds and rela-
tions between them, principals typically begin with some
set of base formulas they believe to hold—perhaps because
they have received digitally signed messages encoding those
formulas, or perhaps because they invoke system calls that
return information—then proceed to reason from those for-
mulas. So could we instead stipulate that each principal p
have a set of beliefs ω(p), called the worldview of p, such
that p says φ holds iff φ ∈ ω(p)? That is, a principal says φ
iff φ is in the worldview2of the principal?

This paper answers that question in the affirmative. We
give two semantics for an authorization logic: a Kripke se-

1The says connective is, therefore, closely related to the
modal necessity operator ✷ [27] and the epistemic knowl-
edge operator K [15].
2Worldviews were first employed by NAL [42], which pio-
neered an informal semantics based on them.
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mantics (§3), and a new belief semantics (§2), which employs
worldviews to interpret says.3 We show (§4) that belief se-
mantics subsume Kripke semantics, in the sense that a belief
model can be constructed from any Kripke model. A formula
is valid in the Kripke model iff it is valid in the constructed
belief model. As a result, the technical machinery of Kripke
semantics can be replaced by belief semantics. This poten-
tially increases the trustworthiness of an authorization sys-
tem, because the semantics is closer to how principals reason
in real systems.

The particular logical system we introduce in this paper
is FOCAL, First-Order Constructive Authorization Logic.
FOCAL extends a well-known authorization logic, cut-down
dependency core calculus (CDD) [2], from a propositional
language to a language with first-order functions and re-
lations on system state. Functions and relations are es-
sential for reasoning about authorization in a real operat-
ing system—as exemplified in Nexus Authorization Logic
(NAL) [42], of which FOCAL and CDD are both fragments.

Having given two semantics for FOCAL, we then turn to
the problem of proving soundness. It turns out that the NAL
proof system is unsound with respect to the semantics pre-
sented here: NAL allows derivation of a well-known formula
(cf. §5.2) that our semantics deems invalid. A priori, the
fault could lie with our semantics or with NAL’s proof sys-
tem. However, if the logic is to be used in a distributed set-
ting without globally-agreed upon state, then the proof sys-
tem should not allow the formula to be derived. So if NAL
is to be used in such settings, its proof system needs to be
corrected. CDD is also unsound with respect to our seman-
tics. However, CDD has been proved sound with respect to
a different semantics [19]. This seeming discrepancy—sound
vs. unsound—illuminates a previously unexplored difference
(cf. §5.2) between how NAL and CDD interpret says.

To achieve soundness for FOCAL, we develop a revised
proof system; the key technical change is using localized hy-
potheses in the proof rules. In §5, we prove the soundness of
our proof system with respect to both our belief and Kripke
semantics. This result yields the first soundness proof with
respect to belief semantics for an authorization logic.

Having relocated trust into the soundness proof, we then
seek a means to increase the trustworthiness of that proof.
We formalize the syntax, proof system, belief semantics, and
Kripke semantics in the Coq proof assistant,4 and we mech-
anize the proofs of soundness for both the belief semantics
and the Kripke semantics. That mechanization relocates
trust from our soundness proof to Coq, which is well-studied
and is the basis of many other formalizations. Our Coq for-
malization contains about 2,400 lines of code.5

This paper thus advances the theory of computer security
with the following novel contributions:

• the first formal belief semantics for authorization logic,

• a proof of equivalence between belief semantics and
Kripke semantics,

• a proof system that is sound with respect to belief and
Kripke semantics, and

3Our belief models are an instance of the syntactic approach
to modeling knowledge [13,15,30,37].
4http://coq.inria.fr
5Our implementation is available from
http://faculty.cs.gwu.edu/~clarkson/projects/focal/.

τ ::= x | f(τ, . . . , τ )

φ ::= true | false | r(τ, . . . , τ ) | τ1 = τ2

| φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⇒ φ2 | ¬φ

| (∀x : φ) | (∃x : φ)

| τ says φ | τ1 speaksfor τ2

Figure 1: Syntax of FOCAL

• the first machine-checked proof of soundness for an
authorization-logic proof system.

We proceed as follows. §2 presents FOCAL and its be-
lief semantics. §3 gives a Kripke semantics for FOCAL. §4
proves the relationship of the belief semantics to the Kripke
semantics. §5 gives a proof system for FOCAL and proves
its soundness with respect to the Kripke semantics. §6 dis-
cusses related work, and §7 concludes. All proofs appear in
the appendix.

2. BELIEF SEMANTICS
FOCAL is a constructive, first-order, multimodal logic.

The key features that distinguish it as an authorization logic
are the says and speaksfor connectives, invented by Lampson
et al. [32]. These are used to reason about authorization—
for example, access control in a distributed system can be
modeled in the following standard way:

Example 1. A guard implements access control for a print-
er p. To permit printing to p, the guard must be convinced
that guard formula PrintServer says printTo(p) holds, where
PrintServer is the principal representing the server process.
That formula means PrintServer believes printTo(p) holds.
To grant printer access to user u, the print server can is-
sue the statement u speaksfor PrintServer . That formula
means anything u says, the PrintServer must also say. So if
u says printTo(p), then PrintServer says printTo(p), which
satisfies the guard formula hence affords the user access to
the printer.

Figure 1 gives the formal syntax of FOCAL. There are two
syntactic classes, terms τ and formulas φ. Metavariable x
ranges over first-order variables, f over first-order functions,
and r over first-order relations.

Formulas of FOCAL do not permit monadic second-order
universal quantification, unlike CDD and NAL. In NAL,
that quantifier was used only to define false and speaksfor

as syntactic sugar. FOCAL instead adds these as primi-
tive connectives to the logic. FOCAL also defines ¬φ as a
primitive connective, but it could equivalently be defined as
syntactic sugar for φ⇒ false.

Syntactically, FOCAL is thus CDD without second-order
quantification, but with first-order terms and quantification
and a primitive speaksfor connective. Likewise, FOCAL
is NAL without second-order quantification, subprincipals,
group principals, and restricted delegation, but with a prim-
itive speaksfor connective.

2.1 Semantic models
The belief semantics of FOCAL combines first-order con-

structive models with worldviews, which are used to inter-
pret says and speaksfor. To our knowledge, this semantics
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is new in the study of authorization logics. Our presenta-
tion mostly follows the semantics of intuitionistic predicate
calculus given by Troelstra and van Dalen [47].

First-order models. A first-order model with equality is a
tuple (D,=, R,F ). The purpose of a first-order model is
to interpret the first-order fragment of the logic, specifically
first-order quantification, functions, and relations. D is a
set, the domain of individuals. Semantically, quantifica-
tion in the logic ranges over these individuals. R is a set
{ri | i ∈ I} of relations on D, indexed by set I . Likewise,
F is a set {fj | j ∈ J} of functions on D, indexed by set
J . There is a distinguished equality relation =, which is an
equivalence relation on D, such that equal individuals are
indistinguishable by relations and functions.

To interpret first-order variables, the semantics employs
valuation functions, which map variables to individuals. We
write v(x) to denote the individual that variable x represents
in valuation v. And we write v[d/x] to denote the valuation
that is the same as v except that v(x) = d.

Constructive models. A constructive model is a tuple (W,
≤, s). The purpose of constructive models is to extend first-
order models to interpret the constructive fragment of the
logic, specifically implication and universal quantification.
W is a set, the possible worlds. We denote an individual
world as w. Intuitively, a world w represents the state of
knowledge of a constructive reasoner. Constructive accessi-
bility relation ≤ is a partial order onW . If w ≤ w′, then the
constructive reasoner’s state of knowledge could grow from
w to w′. But unlike in classical logic, the reasoner need not
commit to a formula φ being either true or false at a world.
Suppose that at world w′, where w ≤ w′, the reasoner con-
cludes that φ holds. And at world w′′, where w ≤ w′′, the
reasoner concludes that ¬φ holds. But at world w, the rea-
soner has not yet concluded that either φ or ¬φ holds. Then
Excluded Middle (φ ∨ ¬φ) doesn’t hold at w.

Function s is the first-order interpretation function. It
assigns a first-order model (Dw,=w, Rw, Fw) to each world
w. Let the individual elements of Rw be denoted as ri,w,
and the elements of Fw as fj,w. Thus, s enables a potentially
different first-order interpretation at each world. But to help
ensure that the constructive reasoner’s state of knowledge
only grows—hence never invalidates a previously admitted
construction—we require s to be monotonic w.r.t. ≤. That
is, if w ≤ w′ then (i) Dw ⊆ Dw′ , (ii) d =w d′ implies d =w′

d′, (iii) ri,w ⊆ ri,w′ , and (iv) for all tuples ~d of individuals

in Dw, it holds that fj,w(~d) =w fj,w′(~d).
It’s natural to wonder why we chose to introduce possible

worlds into the semantics here after arguing against them in
§1. Note, though, that the worlds in the constructive model
are being used to model only the constructive reasoner—
which we might think of as the guard, who exists outside the
logic and attempts to ascertain the truth of formulas—not
any of the principals reasoned about inside the logic. More-
over, we have not introduced any accessibility relations for
principals, but only a single accessibility relation for the con-
structive reasoner. So the arguments in §1 don’t apply. It
would be possible to eliminate our usage of possible worlds
by employing a Heyting algebra semantics [48] of construc-
tive logic. But possible worlds blend better with the Kripke
semantics in §3.

It’s also natural to wonder why FOCAL is constructive
rather than classical. Schneider et al. [42] write that con-
structivism preserves evidence: “Constructive logics are well
suited for reasoning about authorization. . . because construc-
tive proofs include all of the evidence used for reaching a
conclusion and, therefore, information about accountability
is not lost. Classical logics allow proofs that omit evidence.”
They argue that Excluded Middle, used as an axiom in a
proof, would omit evidence by failing to indicate whether
access was granted on the basis of φ holding or ¬φ hold-
ing. Garg and Pfenning [20] also champion the notion of
evidence in authorization logics, writing that “[constructive
logics] keep evidence contained in proofs as direct as possi-
ble.” Regardless, we believe that a classical version of FO-
CAL could be created without difficulty.

Belief models. A belief model is a tuple (W,≤, s, P, ω).
The purpose of belief models is to extend constructive mod-
els to interpret says and speaksfor. The first part of a belief
model, (W,≤, s), must itself be a constructive model. The
next part, P , is the set of principals. Although individuals
can vary from world to world in a model, the set of prin-
cipals is fixed across the entire model. Assuming a fixed
set of principals is consistent with other authorization log-
ics [18, 19, 22], with constructive multimodal logics [43, 50]
(which have a fixed set of modalities), and with classical
multimodal epistemic logics [15] (which have an indexed
set modalities, typically denoted Ki, where the index set is
fixed)—even though constructivist philosophy might deem
it more sensible to allow P to grow with ≤.

Because we make no syntactic distinction between individ-
uals and principals, all principals must also be individuals:
P must be a subset of Dw for every w. First-order quantifi-
cation can therefore range over individuals as well as prin-
cipals. For example, to quantify over all principals, we can
write (∀ x : IsPrin(x) ⇒ φ), where IsPrin is a relation
that holds for all x ∈ P . Nonetheless, this does not consti-
tute truly intuitionistic quantification, because the domain
of principals is constant. Quantification over a non-constant
domain of principals is theoretically of interest, but we know
of no authorization logic that has used it.

We define an equality relation
.
= on principals, such that

principals are equal iff they are equal at all worlds. Formally,
p
.
= p′ iff, for all w, it holds that p =w p′.
The final part of a belief model, worldview function ω,

yields the beliefs of a principal p: the set of formulas that p
believes to hold in world w under first-order valuation v is
ω(w, p, v). For sake of simplicity, §1 used notation ω(p) when
first presenting the idea of worldviews. Now that we’re be-
ing precise, we also include w and v as arguments. To ensure
that the constructive reasoner’s knowledge grows monoton-
ically, worldviews must be monotonic w.r.t. ≤:

WorldviewMonotonicity: If w ≤ w′ then ω(w, p, v)
⊆ ω(w′, p, v).

To ensure that whenever principals are equal they have the
same worldview, we require the following:

Worldview Equality: If p
.
= p′, then, for all w and

v, it holds that ω(w, p, v) = ω(w, p′, v).

And we also require the following conditions to ensure that
valuations cannot cause worldviews to distinguish alpha-
equivalent formulas:



Worldview Valuations:

1. If x /∈ FV (φ) then φ ∈ ω(w, p, v) iff, for all d ∈
Dw, it holds that φ ∈ ω(w, p, v[d/x]).

2. If x ∈ FV (φ) and y /∈ FV (φ) then, for all d ∈
Dw, it holds that φ ∈ ω(w, p, v[d/x]) iff φ[y/x] ∈
ω(w, p, v[d/y]), where φ[y/x] denotes the capture-
avoiding substitution of y for x in formula φ.

Condition (1) ensures that if x is irrelevant to φ, then the
value of x is also irrelevant to whether p believes φ. Con-
dition (2) ensures that if x is relevant to φ, then only its
value—not its name—is relevant to whether p believes φ.

2.2 Semantic validity
Figure 2 gives a belief semantics of FOCAL. The validity

judgment is written B,w, v |= φ where B is a belief model
and w is a world in that model. As is standard, B |= φ holds
iff, for all w and v, it holds that B,w, v |= φ; whenever B |=
φ, then φ is a necessary formula in model B. And B, v |=
φ holds iff for all w, it holds that B,w, v |= φ; whenever
B, v |= φ, then φ is a valuation-necessary formula. Likewise,
|= φ holds iff, for all B, it holds that B |= φ; and whenever
|= φ, then φ is a validity. Let B,w, v |= Γ, where Γ is a
set of formulas, denote that for all ψ ∈ Γ, it holds that
B,w, v |= ψ. Finally, Γ |= φ holds iff, for all B, w, and
v, it holds that B,w, v |= Γ implies B,w, v |= φ; whenever
Γ |= φ, then φ is a logical consequence of Γ.

The semantics relies on an auxiliary interpretation func-
tion µ that maps syntactic terms τ to semantic individuals:

µ(x) = v(x)

µ(fj(~τ)) = fj,w(µ(~τ ))

Implicitly, µ is parameterized on belief model B, world w,
and valuation v, but for notational simplicity we omit writ-
ing these as arguments to µ unless necessary for disambigua-
tion. Variables x are interpreted by looking up their value
in v; functions fj are interpreted by applying their first-
order interpretation fj,w at world w to the interpretation of
their arguments. Notation ~τ represents a list τ1, τ2, . . . , τn
of terms. And µ(~τ ) denotes the pointwise application of µ
to each element of that list, producing µ(τ1), . . . , µ(τn).

The first-order, constructive fragment of the semantics is
routine. The semantics of says is the intuitive semantics we
wished for in §1: A principal µ(τ ) says φ exactly when φ is
in that principal’s worldview ω(w, µ(τ ), v). And a principal
µ(τ1) speaks for another principal µ(τ2) exactly when, in
all constructively accessible worlds, everything µ(τ1) says,
µ(τ2) also says.

Note that some syntactic terms may represent individuals
that are not principals. For example, the integer 42 is pre-
sumably not a principal in P , but it could be an individual
in some domain Dw. An alternative would be to make FO-
CAL a two-sorted logic, with one sort for individuals and
another sort for principals. Instead, we allow individuals
who aren’t principals to have beliefs, because it simplifies
the definition of the logic. The worldviews of non-principal
individuals contain all formulas. Formally, for any individ-
ual d such that d 6∈ P , and for any world w, valuation v, and
formula φ, it holds that φ ∈ ω(w, d, v).

We impose a few well-formedness conditions on world-
views in this semantics, in addition to Worldview Mono-
tonicity andWorldview Equality. Worldviews must be closed

under logical consequence—that is, principals must believe
all the formulas that are a consequence of their beliefs.

Worldview Closure: If Γ ⊆ ω(w, p, v) and Γ |= φ,
then φ ∈ ω(w, p, v).

Worldview Closure means that principals are fully logically
omniscient [15]. With its known benefits and flaws [39,46],
this has been a standard assumption in authorization logics
since their inception [32].

The remaining well-formedness conditions are optional, in
the sense that they are necessary only to achieve soundness
of particular proof rules in §5. Eliminate those rules, and
the following conditions would be eliminated.

Worldviews must ensure that says is a transparent modal-
ity. That is, for any principal p, it holds that p says φ exactly
when p says (p says φ):

Says Transparency: φ ∈ ω(w,µ(τ ), v) iff τ says φ ∈
ω(w,µ(τ ), v).

So says supports positive introspection: if p believes that φ
holds, then p is aware of that belief, therefore p believes that
p believes that φ holds. The converse of that holds as well.
Recent authorization logics include transparency [3,42], and
it is well known (though sometimes vigorously debated) in
epistemic logic [25, 27]. Says Transparency corresponds to
rules says-li and says-ri in figure 5.

Worldviews must enable principals to delegate, or hand-
off, to other principals: if a principal q believes that
p speaksfor q, it should hold that p does speak for q. Hand-
off, as the following axiom, existed in the earliest authoriza-
tion logic [32]:

(q says (p speaksfor q)) ⇒ (p speaksfor q) (1)

To support it, we adopt a condition that ensures whenever
q believes p speaks for q, then it really does:

Belief Hand-off: If (p speaksfor q) ∈ ω(w, q, v) then
ω(w, p, v) ⊆ ω(w, q, v).

Belief Hand-off corresponds to rule sf-i in figure 5.

3. KRIPKE SEMANTICS
The Kripke semantics of FOCAL combines first-order con-

structive models with modal (Kripke) models [15, 27, 43].
Similar semantic models have been explored before (see,
e.g., [18,22,50]). Indeed, the only non-standard part of our
semantics is the treatment of speaksfor, and that part turns
out to be a generalization of previous classical semantics.
Nonetheless, we are not aware of any authorization logic
semantics that is equivalent to or subsumes our semantics.
First-order and constructive models were already presented
in §2, so we begin here with modal models.

3.1 Modal models
A modal model is a tuple (W,≤, s, P,A). The purpose

of modal models is to extend constructive models to inter-
pret says and speaksfor. The first part of a modal model,
(W,≤, s), must itself be a constructive model. The next
part, P , is the set of principals. As with belief models, all
principals must be individuals, so P must be a subset of Dw

for every w. Principal equality relation
.
= is defined just

as in belief models. The final part of a modal model, A,
is a set {≤p | p ∈ P} of binary relations on W , called the



B,w, v |= true always
B,w, v |= false never
B,w, v |= ri(~τ) iff µ(~τ ) ∈ ri,w
B,w, v |= τ1 = τ2 iff µ(τ1) =w µ(τ2)
B,w, v |= φ1 ∧ φ2 iff B,w, v |= φ1 and B,w, v |= φ2

B,w, v |= φ1 ∨ φ2 iff B,w, v |= φ1 or B,w, v |= φ2

B,w, v |= φ1 ⇒ φ2 iff for all w′ ≥ w : B,w′, v |= φ1 implies B,w′, v |= φ2

B,w, v |= ¬φ iff for all w′ ≥ w : B,w′, v 6|= φ
B,w, v |= (∀x : φ) iff for all w′ ≥ w, d ∈ Dw′ : B,w′, v[d/x] |= φ
B,w, v |= (∃x : φ) iff there exists d ∈ Dw : B,w, v[d/x] |= φ
B,w, v |= τ says φ iff φ ∈ ω(w,µ(τ ), v)
B,w, v |= τ1 speaksfor τ2 iff for all w′ ≥ w : ω(w′, µ(τ1), v) ⊆ ω(w′, µ(τ2), v)

Figure 2: FOCAL validity judgment for belief semantics

K,w, v |= τ says φ iff for all w′, w′′ : w ≤ w′ ≤µ(w′,τ) w
′′ implies K,w′′, v |= φ

K,w, v |= τ1 speaksfor τ2 iff ≤w
µ(τ1)

⊇ ≤w
µ(τ2)

K,w, v |= . . . iff same as figure 2, but substituting K for B

Figure 3: FOCAL validity judgment for Kripke semantics

principal accessibility relations.6 If w ≤p w
′, then at world

w, principal p considers world w′ possible. To ensure that
equal principals have the same beliefs, we require

Accessibility Equality: If p
.
= p′, then ≤p = ≤p′ .

Like ≤ in a constructive model, we require s to be mono-
tonic w.r.t. each ≤p. This requirement enforces a kind of
constructivity on each principal p, such that from a world in
which individual d is constructed, p cannot consider possible
any world in which d has not been constructed. Unlike ≤,
none of the ≤p are required to be partial orders: they are not
required to satisfy reflexivity, anti-symmetry, or transitivity.

That non-requirement raises an important question. In
epistemic logics, the properties of what we call the “prin-
cipal accessibility relations” determine what kind of knowl-
edge is modeled [15]. If, for example, these relations must
be reflexive, then the logic models veridical knowledge: if
p says φ, then φ indeed holds. But that is not the kind of
knowledge we seek to model with FOCAL, because princi-
pals may say things that in fact do not hold. So what are
the right properties, or frame conditions, to require of our
principal accessibility relations? We briefly delay presenting
them, so that we can present the Kripke semantics.

3.2 Semantic validity
Figure 3 gives a Kripke semantics of FOCAL. The validity

judgment is written K,w, v |= φ where K is a modal model
and w is a world in that model. Only the judgments for the
says and speaksfor connectives are given in figure 3. For the
remaining connectives, the Kripke semantics is the same as
the belief semantics in figure 2. Interpretation function µ
remains unchanged from §2, except that it is now implicitly
parameterized on K instead of B.

To understand the semantics of says, first observe the fol-
lowing. Suppose that, for all worlds w′, it holds that w ≤ w′

6In our notation, an unsubscripted ≤ always denotes the
constructive relation, and a subscripted ≤ always denotes a
principal relation.

implies w = w′.7 Then the semantics of says simplifies to
the standard semantics of ✷ in classical modal logic [27]:

K,w, v |= τ says φ

iff for all w′′ : w ≤µ(τ) w
′′ implies K,w, v |= φ.

That is, a principal believes a formula holds whenever that
formula holds in all accessible worlds. The purpose of the
quantification over w′, where w ≤ w′, in the unsimplified se-
mantics of says is to achievemonotonicity of the constructive
reasoner:

Proposition 1. If K,w, v |= φ and w ≤ w′ then
K,w′, v |= φ.

That is, whenever φ holds at a world w, if the constructive
reasoner is able to reach an extended state of knowledge at
world w′, then φ should continue to hold at w′. Without the
quantification over w′ in the semantics of says, monotonicity
is not guaranteed to hold. Constructive modal logics have,
unsurprisingly, also used this semantics for ✷ [43,50], and a
similar semantics has been used in authorization logic [18].

Note that, if there do not exist any worlds w′ and w′′ such
that w ≤ w′ ≤µ(τ) w

′′, then at w, principal τ will say any
formula φ, including false. When a principal says false at
world w, we deem that principal compromised at w.

As for the semantics of speaksfor, it might be tempting to
try defining it as syntactic sugar:

τ1 speaksfor τ2 ≡ ∀φ : τ1 says φ⇒ τ2 says φ

However, the formula on the right-hand side is not a well-
formed formula of FOCAL, because it quantifies over syntac-
tic formulas. So the semantics of speaksfor cannot interpret
it directly in terms of says.8

7This condition corresponds to the axiom of excluded mid-
dle, hence its imposition creates a classical variant of FO-
CAL. So it makes sense that adding the frame condition
would result in the classical semantics of ✷.
8It is possible [19,42] to instead use second-order quantifiers
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Figure 4: Frame conditions for Kripke semantics

Instead, the FOCAL semantics of speaksfor generalizes the
classical Kripke semantics of speaksfor [4, 26]. Classically,

K,w, v |= τ1 speaksfor τ2 iff ≤µ(τ1) ⊇ ≤µ(τ2). (2)

That is, the accessibility relation of τ1 must be a superset
of the accessibility relation of τ2. However, that definition
does not account for constructive accessibility, and it even
turns out to interact badly with hand-off.

We therefore relax the classical semantics of speaksfor:

K,w, v |= τ1 speaksfor τ2 iff ≤w
µ(τ1) ⊇ ≤w

µ(τ2) (3)

where ≤w
µ(p) is defined to be ≤p |[w]p ,

9 and [w]p is defined

to be the set of worlds w′ such that w′ is reachable from w,
or vice-versa, by relation (≤ ∪ ≤p)

∗. Note that whenever
[w]p equals W (as it would in classical logic10), it holds that
≤w

µ(p) equals ≤p.
The validity judgment for FOCAL is therefore quite stan-

dard, except for speaksfor, where it generalizes classical logic.
Although we would prefer to adopt a well-known construc-
tive semantics of speaksfor, neither of the two we’re aware of
seems to work for FOCAL: ICL [19] would impose an axiom
called Unit that we do not want to include (cf. §5.2), and
BLsf [22] does not include hand-off (1), which we want to
optionally support (cf. §2.2 and §3.3).

3.3 Frame conditions
We now return to the discussion begun in §3.1 of the frame

conditions for FOCAL. The first two frame conditions we
impose help to ensure Says Transparency:

IT: If w ≤p u ≤p v, then there exists a w′ such that
w ≤ w′ ≤p v.

ID: If w ≤p v, then there exists a w′ and u such that
w ≤ w′ ≤p u ≤p v.

to achieve a direct interpretation. That solution would un-
necessarily complicate our semantics by introducing second-
order quantifiers solely for the sake of defining speaksfor.
9If R is a binary relation on set A, then R|X is the restriction
of R to A, where X ⊆ A. That is, R|X = {(x, x′) | (x, x′) ∈
R and x ∈ X and x′ ∈ X}.

10When frame condition ≤ = W ×W is imposed, construc-
tive logic collapses to classical. Under that condition, every
world w′ would be reachable from w, hence [w]p =W .

Figure 4 depicts these conditions; dotted lines indicate exis-
tentially quantified edges. IT helps to guarantee if p says φ
then p says (p says φ); ID does the converse.11

Note how, if w = w′, the conditions reduce to the classical
definitions of transitivity and density. Those classical con-
ditions are exactly what guarantee transparency in classical
modal logic.

IT and ID are not quite sufficient to yield transparency.
By also imposing the following frame condition, we do achieve
transparency:12

F2: If w ≤p v ≤ v′, then there exists a w′ such that
w ≤ w′ ≤p v

′.

F2 is depicted in figure 4. It is difficult to motivate F2
solely in terms of authorization logic, though it has been
proposed in several Kripke semantics for constructive modal
logics [14, 16, 41, 43]. But there are two reasons why F2 is
desirable for FOCAL:

• Assuming F2 holds, IT and ID are not only sufficient
but also necessary conditions for transparency—a re-
sult that follows from work by Plotkin and Stirling [41].
So in the presence of F2, transparency in FOCAL is
precisely characterized by IT and ID.

• Suppose FOCAL were to be extended with a ✸ modal-
ity. It could be written τ suspects φ, with semantics
K,w, v |= τ suspects φ iff there exists w′ such that
w ≤µ(τ) w

′ and K,w′, v |= φ. We would want says and
suspects to interact smoothly. For example, it would
be reasonable to expect that ¬(τ suspects φ) implies
τ says ¬φ. For if τ does not suspect φ holds anywhere,
then τ should believe ¬φ holds. Condition F2 guaran-
tees that implication [41]. So F2 prepares FOCAL for
future extension with a suspects modality.13

To ensure the validity of hand-off, we impose the following
frame condition:

H: For all principals p and worlds w, if there do not
exist any worlds w′ and w′′ such that w ≤ w′ ≤p w

′′,
then, for all p′, it must hold that ≤w

µ(p) ⊆ ≤w
µ(p′).

This condition guarantees that if a principal p becomes com-
promised at world w, then the reachable component of its
accessibility relation will be a subset of all other principals’.
By the FOCAL semantics of speaksfor, all other principals
therefore speak for p at w.

Each frame condition above was imposed, not for ad hoc
purposes, but because of a specific need in the proof of the
soundness result of §5. So with appropriate deletion of rules
from the proof system, each of the above frame conditions
could be eliminated. IT and ID should be removed if rules

11IT and ID are abbreviations for intuitionistic transitivity
and intuitionistic density.

12F2 is the name given this condition by Simpson [43].
13Were suspects to be added to FOCAL, it would also be de-
sirable to impose a fourth frame condition: if w ≤ w′ and
w ≤p v, then there exists a v′ such that v ≤ v′ and w′ ≤p v

′.
This condition, named F1 by Simpson [43], guarantees [41]
that τ suspects φ implies ¬(τ says ¬φ). It also guarantees
monotonicity (cf. proposition 1) for suspects. Figure 4 de-
picts F1. Simpson [43, p. 51] argues that F1 and F2 could
be seen as fundamental, not artificial, frame conditions for
constructive modal logics.



says-li and says-ri (from figure 5) are removed; F2 should
be removed if rule says-lri is removed; and H should be
removed if rule sf-i is removed.

Finally, we impose one additional condition to achieve the
equivalence results (theorem 1 and proposition 2) of §4:

WSF:K,w, v |= τ speaksfor τ ′ iff, for all φ, ifK,w, v |=
τ says φ then K,w, v |= τ ′ says φ.

This condition restricts the class of Kripke models to those
where speaksfor is the weak speaksfor connective [4, 26]. In
fact, we’d prefer to use WSF directly as the semantics of
speaksfor in figure 3.14 But it wouldn’t be a well-founded
definition of |=, because φ could itself be τ speaksfor τ ′,
leading to a circularity in the semantic definition. So we
instead impose WSF as a separate axiom.

4. SEMANTIC TRANSFORMATION
We have now given two semantics for FOCAL, a belief

semantics (§2) and a Kripke semantics (§3). How are these
two semantics related? It turns out that a Kripke model
can be transformed into a belief model, but the converse
does not hold—as we now explain.

Given a modal model K, there is a natural way to con-
struct a belief model from it: assign each principal a world-
view containing exactly the formulas that the principal says
in K. Call this construction k2b, and let k2b(K) denote the
resulting belief model.

To give a precise definition of k2b, we need to introduce
a new notation. Given a principal p ∈ P , formula p says φ
is not necessarily well-formed, because p is not necessarily
a syntactic term. So let K,w, v |= p̂ says φ be defined as
follows: for all w′ and w′′ such that w ≤ w′ ≤p w′′, it
holds that K,w′′, v |= φ. This definition simply unrolls the
semantics of says to produce something well-formed.15

The precise definition of k2b is as follows: if K = (W,≤, s,
P, A), then k2b(K) is belief model (W,≤, s, P, ω), where
ω(w, p, v) is defined to be {φ | K,w, v |= p̂ says φ}.

Our first concern is whether k2b(K) produces a belief
model that is equivalent to K. In particular, a formula
should be valid in K iff it is valid in k2b(K). Construction
k2b does produce equivalent models:

Theorem 1. For all K, w, v, and φ, K,w, v |= φ iff
k2b(K), w, v |= φ.

Our second concern is whether k2b(K) satisfies all the con-
ditions required by §2: Worldview Monotonicity, Worldview
Equality, Worldview Closure, Says Transparency, and Belief
Hand-off. If a belief model B does satisfy these conditions,
then B is well-formed. And modal model K is well-formed
if it satisfies all the conditions required by §3: Accessibility
Equality, IT, ID, F2, H, and WSF. Construction k2b does,
indeed, produce well-formed belief models:

Proposition 2. For all well-formed modal models K, belief
model k2b(K) is well-formed.

We might wonder whether there is a construction that can
soundly transform belief models into Kripke models. Con-
sider trying to transform the following belief model B into
a Kripke model:

14If FOCAL included second-order quantification as a logical
connective, speaksfor could be defined as syntactic sugar [2],
avoiding the awkwardness of WSF.

15Another solution would be to stipulate that every principal
p can be named by a term p̂ in the syntax.

B has a single world w and a proposition (i.e., a
nullary relation) X, such that, for all v, it holds
that B,w, v 6|= X. Suppose that principal p’s
worldview containsX—i.e., for all v, it holds that
X ∈ ω(w, p, v)—and that p’s worldview does not
contain false. By the semantics of says, it holds
that B,w, v |= p says X.

When transforming B to a Kripke model K, what edges
could we put in ≤p? There are only two choices: ≤p could
be empty, or ≤p could contain the single edge (w,w). If ≤p

is empty, then p is compromised, hence p says false. That
contradicts our assumption that false is not in p’s worldview.
If w ≤p w, then for w′ and w′′ such that w ≤ w′ ≤p w

′′,
it does not hold that K,w′′, v |= X, because w and w′′ can
only be instantiated as w, and because B,w, v 6|= X. Hence
p does not say X. That contradicts our assumption that X
is in p’s worldview. So we cannot construct an accessibility
relation ≤p that causes the resulting Kripke semantics to
preserve validity of formulas from the belief semantics.

There is, therefore, no construction that can soundly trans-
form belief models into Kripke models—unless, perhaps, the
set of worlds is permitted to change. We conjecture that it
is possible to synthesize a new set of possible worlds, and
equivalence relations on them, yielding a Kripke model that
preserves validity of formulas from the belief model.

5. PROOF SYSTEM
FOCAL’s derivability judgment is written Γ ⊢ φ where

Γ is a set of formulas called the context.16 As is standard,
we write ⊢ φ when Γ is the empty set. In that case, φ is a
theorem. We write Γ, φ to denote Γ ∪ {φ}.

Figure 5 presents the proof system. In it, φ[τ/x] denotes
capture-avoiding substitution of τ for x in φ. The first-
order fragment of the proof system is routine (e.g., [38, 45,
49]).17 Because of imp-i, the deduction theorem holds for
FOCAL [24]. says-lri, says-li, and says-ri use notation
τ says Γ, which means that τ says all the formulas in set Γ.
Formally, τ says Γ is defined as {τ says φ | φ ∈ Γ}.

says-lri corresponds [27] to standard axiom K along with
rule N from epistemic logic; says-ri, to standard axiom 4;
and says-li, to the converse C4 [3,10] of 4:

K : ⊢ (p says (φ⇒ ψ)) ⇒ (p says φ) ⇒ (p says ψ),

N : From ⊢ φ infer ⊢ p says φ,

4 : ⊢ (p says φ) ⇒ (p says (p says φ)),

C4 : ⊢ (p says (p says φ)) ⇒ (p says φ).

K and says-lri mean that modus ponens applies inside says.
They correspond to Worldview Closure. C4 and 4, along
with says-li and says-ri, mean that p says (p says φ) is
equivalent to p says φ; they correspond to Says Transparency
in the belief semantics. In the Kripke semantics, says-ri

corresponds to IT; and says-li, to ID. By including rules

16These formulas are localized hypotheses, which the proof
system uses instead of the hypothetical judgments found in
natural deduction systems. Similar to the left-hand side Γ of
a sequent Γ =⇒ ∆, the localized hypotheses are assumptions
being used to derive right-hand side ∆. Unlike a sequent, Γ
is a set, not a sequence.

17Under the usual constructive definition of ¬φ as φ⇒ false,
rules not-i and not-e are merely admissible rules and could
be eliminated from the proof system.



Γ, φ ⊢ φ
hyp

Γ ⊢ φ

Γ, ψ ⊢ φ
weak

Γ ⊢ true
true-i

Γ ⊢ false

Γ ⊢ φ
false-e

Γ ⊢ φ Γ ⊢ ψ

Γ ⊢ φ ∧ ψ
and-i

Γ ⊢ φ ∧ ψ

Γ ⊢ φ
and-le

Γ ⊢ φ ∧ ψ

Γ ⊢ ψ
and-re

Γ ⊢ φ1

Γ ⊢ φ1 ∨ φ2
or-li

Γ ⊢ φ2

Γ ⊢ φ1 ∨ φ2
or-ri

Γ ⊢ φ1 ∨ φ2 Γ, φ1 ⊢ ψ Γ, φ2 ⊢ ψ

Γ ⊢ ψ
or-e

Γ, φ ⊢ ψ

Γ ⊢ φ⇒ ψ
imp-i

Γ ⊢ φ Γ ⊢ φ⇒ ψ

Γ ⊢ ψ
imp-e

Γ, φ ⊢ false

Γ ⊢ ¬φ
not-i

Γ ⊢ φ Γ ⊢ ¬φ

Γ ⊢ false
not-e

Γ ⊢ φ x 6∈ FV (Γ)

Γ ⊢ (∀x : φ)
forall-i

Γ ⊢ (∀ x : φ)

Γ ⊢ φ[τ/x]
forall-e

Γ ⊢ φ[τ/x]

Γ ⊢ (∃x : φ)
exists-i

Γ ⊢ (∃x : φ) Γ, φ ⊢ ψ x 6∈ FV (Γ, ψ)

Γ ⊢ ψ
exists-e

Γ ⊢ τ = τ
eq-r

Γ ⊢ τ1 = τ2
Γ ⊢ τ2 = τ1

eq-s

Γ ⊢ τ1 = τ2 Γ ⊢ τ2 = τ3
Γ ⊢ τ1 = τ3

eq-t
Γ ⊢ τi = τ ′i

Γ ⊢ f(τ1, . . . , τn) = f(τ ′1, . . . , τ
′

n)
eq-fun

Γ ⊢ r(τ1, . . . , τn) Γ ⊢ τi = τ ′i

Γ ⊢ r(τ ′1, . . . , τ
′

n)
eq-rel

Γ ⊢ φ

τ says Γ ⊢ τ says φ
says-lri

Γ ⊢ τ says φ

τ says Γ ⊢ τ says φ
says-li

τ says Γ ⊢ φ

τ says Γ ⊢ τ says φ
says-ri

Γ ⊢ τ2 says (τ1 speaksfor τ2)

Γ ⊢ τ1 speaksfor τ2
sf-i

Γ ⊢ τ1 speaksfor τ2 Γ ⊢ τ1 says φ

Γ ⊢ τ2 says φ
sf-e

Γ ⊢ τ speaksfor τ
sf-r

Γ ⊢ τ1 speaksfor τ2 Γ ⊢ τ2 speaksfor τ3

Γ ⊢ τ1 speaksfor τ3
sf-t

Figure 5: FOCAL derivability judgment

corresponding to 4 and C4, it is not our intent to argue that
those axioms are necessary in authorization logics (which is
debatable); rather, our intent is just to show how to support
them.

sf-i corresponds to hand-off (1). sf-e uses speaksfor to
deduce beliefs. sf-r and sf-t state that speaksfor is reflexive
and transitive.

The usual sequent calculus structural rules of contrac-
tion and exchange are admissible. But weakening (our rule
weak) is not admissible: it must be directly included in the
proof system, because the conclusions of says-{lri,li,ri}
capture their entire context Γ inside says.

5.1 Soundness
Our first soundness theorem for FOCAL states that if φ

is provable from assumptions Γ, and that if a belief model
validates all the formulas in Γ, then that model must also
validate φ. Therefore, any provable formula is valid in the
belief semantics:

Theorem 2. If Γ ⊢ φ and B,w, v |= Γ, then B,w, v |= φ.

We have mechanized the proof of this theorem in Coq. The
result is, to our knowledge, the first proof of soundness for
an authorization logic w.r.t. a belief semantics. The proof of
theorem 2 relies on the following proposition, which states
monotonicity of validity w.r.t. ≤:

Proposition 3. If B,w, v |= φ and w ≤ w′ then
B,w′, v |= φ.

The proof of it is also mechanized in Coq.
Our second soundness theorem for FOCAL states that any

provable formula is valid in the Kripke semantics:

Theorem 3. If Γ ⊢ φ and K,w, v |= Γ, then K,w, v |= φ.

The proof of that theorem relies on proposition 1 (mono-
tonicity of the Kripke semantics). We also have mechanized
the proofs of theorem 3 and proposition 1 in Coq.

5.2 State in distributed systems
FOCAL was derived from CDD [2] and NAL [42]. But we

deliberately designed the FOCAL proof system such that its
theory differs in one important way from theirs. We discuss
our motivation for this change, next.

There are two standard ways of “importing” beliefs into
a principal’s worldview. The first is rule N from §5, also
known as the rule of Necessitation: from ⊢ φ, infer ⊢ p says

φ. The second is an axiom known as Unit: ⊢ φ ⇒ (p says φ).
Though superficially similar, it is well-known that Necessi-
tation and Unit lead to different theories. Abadi [3] explores
some of the proof-theoretic differences, particularly some of
the surprising consequences of Unit in classical authoriza-
tion logic. In the example below, we focus on one difference
that does not seem to have been explored in constructive
authorization logic:

Example 2. MachinesM1 andM2 execute processes P1 and
P2, respectively. M1 has a register R. Let Z be a proposition
representing “register R is currently set to zero.” According
to Unit, ⊢ Z ⇒ (P1 says Z) and ⊢ Z ⇒ (P2 says Z). The
former means that a process on a machine knows the current
contents of a register on that machine; the latter means that
a process on a different machine must also know the current
contents of the register. But according to Necessitation, if ⊢
Z then ⊢ P1 says Z and ⊢ P2 says Z. Only if R is guaranteed
to be constant—i.e., it can never at any time be anything
other than zero—must the two processes say so.

Unit, therefore, is appropriate when propositions (or re-
lations or functions) represent global state upon which all
principals are guaranteed to agree. But when propositions
represent local state that could be unknown to some princi-
pals, Unit would arguably be an invalid axiom. A counter-
model demonstrating Unit’s invalidity is easy to construct—
for example, stipulate a world w at which Z holds, and let
P1’s worldview contain Z but P2’s worldview not contain
Z. That countermodel doesn’t apply to Necessitation, be-



cause Z is not a theorem in it, therefore the principals may
disagree on Z’s validity.

Prior work has objected to Unit for other reasons (cf. §6),
but not for this difference between local and global state.
We are unaware of any authorization logic that rejects Ne-
cessitation, which is widely accepted along with axiom K
(cf. §5) in normal modal logic [27].

FOCAL is designed for reasoning about state in distributed
systems, where principals (such as machines) may have local
state, and where global state does not necessarily exist—the
reading at a clock, for example, is not agreed upon by all
principals. So Unit would be invalid for FOCAL principals;
Necessitation is the appropriate choice. We therefore in-
clude Necessitation in FOCAL in the form of rule says-lri.
Having that rule in our proof system is equivalent to having
both Necessitation and K in a natural-deduction proof sys-
tem [27, p. 214, where says-lri is called lr]. Unit, on the
other hand, is invalid in FOCAL’s semantics, and FOCAL’s
proof system is sound w.r.t. its semantics, so it’s impossible
to derive Unit in FOCAL.

Similarly, NAL principals do not necessarily agree upon
global state. NAL does include Necessitation as an inference
rule and does not include Unit as an axiom. However, NAL
permits Unit to be derived as a theorem:18

[φ]1

p says φ
nal-says-i

φ⇒ p says φ
nal-imp-i1

NAL’s proof system is, therefore, arguably unsound w.r.t.
our belief semantics: there is a formula (Unit) that is a
theorem of the system but that is not semantically valid.

NAL extends CDD’s proof system, so we might suspect
that CDD is also unsound w.r.t. our semantics. And it is.
However, CDD has been proved sound w.r.t. a lax logic se-
mantics [19]. That semantics employs a different intuition
about says than NAL. CDD understands p says φ to mean
“when combining the [statement φ] that the [guard] believes
with those that [p] contributes, the [guard] can conclude
φ. . . the [guard’s] participation is left implicit” [2, p. 13]. In
other words, the guard’s beliefs are imported into p’s beliefs
at each world. That results in a different meaning of says
than FOCAL or NAL employs.

Since Abadi’s invention of CDD [2], the says connective
is frequently assumed to satisfy the monad [36] laws, which
include Unit. But FOCAL rejects Unit, so FOCAL’s says

connective is not a monad. The monad laws also include
an axiom named Bind, which turns out to be invalid in FO-
CAL’s semantics.19 We don’t know whether rejecting the
monad laws will have any practical impact on FOCAL. But
the seminal authorization logic, ABLP [4], didn’t adopt the
monad laws. Likewise, Garg and Pfenning [21] reject Unit
in their authorization logic BL0; they demonstrate that Unit
leads to counterintuitive interpretations of some formulas in-
volving delegation. And Abadi [1] notes that Unit “should

18Rules nal-imp-i and nal-says-i are given by Schneider et
al. [42]. The brackets around φ at the top of the proof tree
indicate that it is used as a hypothesis [49]. The appearance
of“1”as a super- and subscript indicate where the hypothesis
is introduced and cancelled.

19The terms “monad,”“lax logic,” and the combination of ax-
ioms Unit and Bind all three convey the same mathematical
structure, so it’s not surprising that FOCAL differs from all
of them.

be used with caution (if at all),” suggesting that it be re-
placed with the weaker axiom (p says φ) ⇒ (q says p says φ).
Genovese et al. [22] carry out that suggestion. So in rejecting
the monad laws, FOCAL is at least in good company.

6. RELATED WORK
FOCAL has the first formal belief semantics of any au-

thorization logic. To our knowledge, belief semantics have
been used in only one other authorization logic, and that
logic—NAL [42]—has only an informal semantics based on
worldviews.

But many of the pieces of FOCAL, including its semantics
and proof system, are naturally derived from previous work.
We summarize here what we borrowed vs. what we invented;
the main body of the paper contains detailed citations. FO-
CAL’s belief semantics is a standard first-order constructive
semantics, but the addition of worldviews to interpret says

and speaksfor is novel (with the exception of NAL, which
used worldviews informally). FOCAL’s Kripke semantics
for everything except speaksfor is likewise standard, and
its frame conditions (except H and WSF) are already well-
known in constructive modal logic, but the application of IT
and ID to authorization logic seems to be novel. FOCAL’s
proof system, excluding says and speaksfor, is a straightfor-
ward first-order constructive proof system. The fragment for
says is our own adaptation of modal-logic natural-deduction
rules for the ✷ connective. The fragment for speaksfor cor-
responds to standard definitions used in many authorization
logics.

Semantic structures similar to our belief models have been
investigated in the context of epistemic logic [13, 15, 37].
Konolige [30] proves an equivalence result for classical propo-
sitional logic similar to our theorem 1.

Garg and Abadi [19] give a Kripke semantics for a logic
they call ICL, which could be regarded as a propositional
fragment of FOCAL. The ICL semantics of says, however,
uses invisible worlds to permit principals to be oblivious to
the truth of formulas at some worlds. That makes Unit
(§5.2) valid in ICL, whereas Unit is invalid in FOCAL.

Garg [18] studies the proof theory of a logic called DTL0,
and gives a Kripke semantics that uses both invisible worlds
and fallible worlds, at which false is permitted to be valid.
Instead of Unit, it uses the axiom p says ((p says φ) ⇒ φ).
That axiom is unsound in FOCAL. DTL0 does not have a
speaksfor connective.

Genovese et al. [22] study several uses for Kripke seman-
tics with an authorization logic they call BLsf, which also
could be regarded as a propositional fragment of FOCAL.
They show how to generate evidence for why an access should
be denied, how to find all logical consequences of an au-
thorization policy, and how to determine which additional
credentials would allow an access. However, the Kripke se-
mantics of BLsf differs from FOCAL’s in its interpretation of
both says and speaksfor, so the results of Genovese et al. are
not immediately applicable to FOCAL.

Garg and Pfenning [20] prove non-interference properties
for a first-order constructive authorization logic. Such prop-
erties mean that one principal’s beliefs cannot interfere with
another principal’s beliefs unless there is some trust relation-
ship between those principals. Abadi [2] also proves such a
property for dependency core calculus (DCC), which is the
basis of authorization logic CDD. We conjecture that similar
properties could be proved for FOCAL.



7. CONCLUDING REMARKS
This work began with the idea of giving a Kripke seman-

tics to NAL. Proving soundness—at first on paper, not in
Coq—turned out to be surprising, because Unit is semanti-
cally invalid but derivable in NAL (§5.2). The complexity
of the resulting Kripke semantics motivated us to seek a
simpler semantics. We were inspired by the informal world-
view semantics of the NAL rationale [42] and elaborated that
into our belief semantics (§2). In future work, we plan to up-
grade FOCAL to handle NAL’s advanced features, including
intensional group principals.

Mechanizing the proofs of soundness in Coq was frequently
rewarding. It exposed several bugs (in either our proof sys-
tem or our semantics) and gave us high confidence in the
correctness of the result. We expect further benefits, too.
Other researchers can now use our formalization as a ba-
sis for mechanizing results about authorization logics. And
from the formalization of the FOCAL proof system in Coq,
we could next extract a verified theorem checker. It would
input a proof of a FOCAL formula, expressed in the FO-
CAL proof system, and output whether the proof is correct.
Coq would verify that the checker correctly implements the
FOCAL proof system. After FOCAL is upgraded to handle
all of NAL’s features, the resulting theorem checker could
replace the current Nexus [44] theorem checker, which is im-
plemented in C. A verified theorem checker would arguably
be more trustworthy than the C implementation, thus in-
creasing the trustworthiness of the operating system.

Our goal was to increase the trustworthiness of authoriza-
tion logics, hence our concentration on soundness results.
Another worthwhile goal would to be increase the utility of
authorization logics, and toward that end we could inves-
tigate the completeness of FOCAL: are all valid formulas
provable? A few authorization logics—ICL [19], DTL0 [18],
and BLsf [22]—do have completeness results for Kripke se-
mantics; however, none of those is immediately applicable
to FOCAL.20 We leave adaptation of them as future work.
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APPENDIX: PROOFS

Proposition 1.
If K,w, v |= φ and w ≤ w′ then K,w′, v |= φ.

Proof. By structural induction on φ. This proof has been
mechanized in Coq.

Theorem 1.
For all K, w, v, and φ, it holds that K,w, v |= φ iff
k2b(K), w, v |= φ.

Proof. First, we show the forward direction: K,w, v |= φ
implies k2b(K), w, v |= φ. All of the cases except says and
speaksfor are straightforward, because those are the only two
cases where the interpretation of formulas differs in the two
semantics.

• Case φ = τ says ψ. Suppose K,w, v |= τ says ψ. By the
definition of k2b, formula ψ ∈ ω(w, µ(τ ), v). By the be-
lief semantics of says, it must hold that k2b(K), w, v |=
τ says ψ.

• Case φ = τ speaksfor τ ′. Assume K,w, v |= τ speaksfor

τ ′. We need to show that, for all w′ ≥ w, it holds that
ω(w′, µ(τ ), v) ⊆ ω(w′, µ(τ ′), v). So let w′ and ψ be
arbitrary such that w′ ≥ w and ψ ∈ ω(w′, µ(τ ), v), and
we’ll show that ψ ∈ ω(w′, µ(τ ′), v). By the definition
of k2b, it holds that K,w′, v |= τ says ψ. Note that, by
proposition 1 and our original assumption, we have that
K,w′, v |= τ speaksfor τ ′. From those last two facts,
and from the Kripke semantics of says and speaksfor, it
follows that K,w′, v |= τ ′ says ψ. By the definition of
k2b, it therefore holds that ψ ∈ ω(w′, µ(τ ′), v).

Second, we show the backward direction: K,w, v |= φ is
implied by k2b(K), w, v |= φ. Again, all of the cases except
says and speaksfor are straightforward, because those are the
only two cases where the interpretation of formulas differs
in the two semantics.

• Case φ = τ says ψ. Suppose k2b(K), w, v |= τ says

ψ. By the belief semantics of says, we have that ψ ∈
ω(w,µ(τ ), v). By the definition of k2b, it holds that
K,w, v |= τ says ψ.

• Case φ = τ speaksfor τ ′. Assume k2b(K), w, v |=
τ speaksfor τ ′. By the belief semantics of speaksfor, we
have that, for all w′ ≥ w, it holds that ω(w′, µ(τ ), v) ⊆
ω(w′, µ(τ ′), v). Let w′ be w. Then ω(w,µ(τ ), v) ⊆
ω(w,µ(τ ′), v). By the definitions of k2b and subset,
it follows that, for all φ, if K,w, v |= τ says φ then
K,w, v |= τ ′ says φ. By WSF, we therefore have that
K,w, v |= τ speaksfor τ ′.

Proposition 2.
For all well-formed modal models K, belief model k2b(K) is
well-formed.

Proof. Let B = k2b(K). For B to be well-formed it must
satisfy several conditions, which were defined in §2. We now
show that these hold for any such B constructed by k2b.

1. Worldview Monotonicity. Assume w ≤ w′ and φ ∈
ω(w, p, v). By the latter assumption and the defini-
tion of k2b, we have that K,w, v |= p̂ says φ. From
proposition 1, it follows that K,w′, v |= p̂ says φ. By

the definition of k2b, it then holds that φ ∈ ω(w′, p, v).
Therefore ω(w, p, v) ⊆ ω(w′, p, v).

2. Worldview Equality. Assume p
.
= p′. Then by Ac-

cessibility Equality, ≤p equals ≤p′ . By the Kripke se-
mantics of says, it follows that K,w, v |= p says φ iff
K,w, v |= p′ says φ. By the definition of k2b, therefore,
ω(w, p, v) = ω(w, p′, v).

3. Worldview Closure. Assume Γ ⊆ ω(w, p, v) and Γ |= φ,
that is, φ is a logical consequence of Γ in belief struc-
ture B. By the definition of k2b, we have ω(w, p, v) =
{φ | K,w, v |= p̂ says φ}. So for all ψ ∈ Γ, it holds
that K,w, v |= p̂ says ψ. By the Kripke semantics
of says, it follows that for all w′ and w′′ such that
w ≤ w′ ≤p w′′, it holds that K,w′′, v |= ψ. Thus
K,w′′, v |= Γ. So k2b(K), w′′, v |= Γ by theorem 1.
By our initial assumption that Γ |= φ, it follows that
k2b(K), w′′, v |= φ. Again applying theorem 1, we have
that K,w′′, v |= φ. By the Kripke semantics of says,
it follows that K,w, v |= p̂ says φ. Therefore, by the
definition of k2b, we have φ ∈ ω(w, p, v).

4. Says Transparency. We prove the “iff” by proving both
directions independently.

(⇒) Assume φ ∈ ω(w, p, v). By the definition of k2b, it
holds that K,w, v |= p̂ says φ. From IT and F2, it fol-
lows that K,w, v |= p̂ says (p̂ says φ). By the definition
of k2b, therefore, (p̂ says φ) ∈ ω(w, p, v).

(⇐) Assume (p̂ says φ) ∈ ω(w, p, v). By the definition
of k2b, it holds that K,w, v |= p̂ says (p̂ says φ). From
ID, it follows that K,w, v |= p̂ says φ. By the definition
of k2b, therefore, φ ∈ ω(w, p, v).

5. Belief Hand-off. We actually prove a stronger result—
an “iff” rather than just an “if”. By the definitions of
subset and k2b, we have that ω(w, p, v) ⊆ ω(w, q, v)
holds iff for all φ, if K,w, v |= p̂ says φ then K,w, v |=
q̂ says φ. By WSF, that holds iff K,w, v |= p̂ speaksfor

q̂. By the fact below, that holds iff K,w, v |= q̂ says

(p̂ speaksfor q̂). By the definition of k2b, that holds iff
q̂ speaksfor p̂ ∈ ω(w, q, v).

Fact: in the Kripke semantics, |= q̂ says (p̂ speaksfor q̂)
⇐⇒ p̂ speaksfor q̂. The proof of that fact has been
mechanized in Coq.

Theorem 2.
If Γ ⊢ φ and B,w, v |= Γ, then B,w, v |= φ.

Proof. By induction on the derivation of Γ ⊢ φ. This proof
has been mechanized in Coq.

Theorem 3.
If Γ ⊢ φ and K,w, v |= Γ, then K,w, v |= φ.

Proof. By induction on the derivation of Γ ⊢ φ. This proof
has been mechanized in Coq.

Proposition 3.
If B,w, v |= φ and w ≤ w′ then B,w′, v |= φ.

Proof. By structural induction on φ. This proof has been
mechanized in Coq.
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