THE GEORGE WASHINGTON UNIVERSITY

CSPRI Blockchain–DRR Research Themes To see the future in real time

WASHINGTON, DC

Dec 16, 2020 Neil H. Wasserman <u>nhwasserman@gwu.edu</u> Tel. 202-556-1501

Blockchain and DRR

New opportunities for research at the intersection of disciplines

- Information science
- Machine learning
- Network analysis
- Social systems
- Cognitive science

Commonalities among type of disasters imply commonalities in solutions

Role of cognition and risk visibility

Race between escalation of disaster impact and means to mitigate impact

DRR – Obstacles

Resistance in responding to cognitively distant outcomes

Needs Sendai Framework (2015)

1.Understanding disaster risk;

2.Strengthening disaster risk governance to manage disaster risk;

3.Investing in disaster risk reduction for resilience;

4.Enhancing disaster preparedness for effective response, and to "<u>Building Back Better</u>" in recovery, rehabilitation and reconstruction.

Challenges From Daniel Ariely

- 1. Impact is in the future.
- 2. Affects others more than me.
- 3. Impact is probable, not certain.

4. Human brains are not built to take in exponential change.

- 5. Cause is hidden.
- 6. Efficacy Invisible impact of individual action; lack of individual incentive to do the right thing.

Need to expand cognitive vision in space and time – to see impact on other geographies and impact on future populations.

- Incentivize investment in DRR Infrastructure
- Incentivize behavior change in populations

Challenge of slow moving, high-impact disasters

- Pandemic preparedness
 - Detection
 - Vaccine development capability
 - PPE supplies
 - Means for behavior change governance, norms
- Climate change impacts on food, water, land, health
- Aging and chronic disease
- Deteriorating infrastructure

Blockchain, Disaster Risk, and Incentive Visibility

Cognitive Barrier	Climate	Pandemic	Infra- structure	Chronic Disease	Education	Cyber Attack
Long-term impact	\checkmark	\checkmark	\checkmark	√	\checkmark	
Slow change	\checkmark		\checkmark	√		
Exponential growth	Linear /resource limited	\checkmark		Linear /resource limited	✓	
Affects others more than me (individual versus social)	Social	Social	Social	Individual	Individual	✓
Probabilistic	\checkmark	\checkmark	\checkmark	\checkmark		✓
Hidden causes	\checkmark	\checkmark		\checkmark		√
Lack of individual incentive	\checkmark		\checkmark			S I I V

ORGE

TON, DC

Blockchain's role in social behavior change

Slowly Changing Fragile Systems

Examples:

- Satellite collision avoidance
- Chronic disease (onset of acute incidents)
- Water resource management
- Pandemic control

Features

- Small amount of information need to describe state
- Perturbations matter
- Potential cascading effects of incidents
- A little attention goes a long way

(Preventing or isolating an incident interrupts cascade of destructive impact)

What blockchain can do for DRR

- Connect behavior with incentives
- Provide interoperable access to data and to people
- Provide trusted record of responsive actions
- Management of Slowly Changing Fragile Systems
- Behavior change in networked populations

Goal: To reduce the information needed to manage behaviors in populations Means: Synchronization and Consensus (what blockchain is good at)

