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ABSTRACT
Many enterprise websites provide search engines to facilitate cus-
tomer access to their underlying documents or data. With the web
interface of such a search engine, a customer can specify one or
a few keywords that he/she is interested in; and the search engine
returns a list of documents/tuples matching the user-specified key-
words, sorted by an often-proprietary scoring function.

It was traditionally believed that, because of its highly-restrictive
interface (i.e., keyword search only, no SQL-style queries), such a
search engine serves its purpose of answering individual keyword-
search queries without disclosing big-picture aggregates over the
data which, as we shall show in the paper, may incur significant
privacy concerns to the enterprise. Nonetheless, recent work on
sampling and aggregate estimation over a search engine’s corpus
through its keyword-search interface transcends this traditional be-
lief. In this paper, we consider a novel problem of suppressing
sensitive aggregates for enterprise search engines while maintain-
ing the quality of answers provided to individual keyword-search
queries. We demonstrate the effectiveness and efficiency of our
novel techniques through theoretical analysis and extensive experi-
mental studies.

Categories and Subject Descriptors
H.2.7 [Database Administration]; H.3.5 [Online Information Ser-
vices]: Web-based services
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1. INTRODUCTION
Enterprise Search Engine: With web-scale search engines (e.g.,
Google, Bing) becoming the de facto way for web users to lo-
cate and access resources of interest, many enterprises have coped
with the trend by offering their customers enterprise search en-
gines for accessing the large amounts of documents or (structured)
data inside the enterprise’s website. Examples of such enterprise
search engines range from keyword-based product search provided
by online retailers such as Amazon.com, to case search provided
by many government agencies such as the US patent office, and to
article search provided by almost all online content providers (e.g.,
Washington Post).

In general, the web interface of such a search engine offers a
text-box input through which a customer can specify one or a few
keywords that he/she is interested in. The search engine will re-
turn a list of documents or tuples that match the user-specified key-
words1. Because of the length limit of a return web page, not all
matching documents/tuples may be returned. Instead, the top-k re-
sults are selected according to a scoring function often proprietary
to the enterprise, and then returned to the customer.

Privacy Concerns on Sensitive Aggregates: While an enterprise
search engine is designed to answer individual search queries spec-
ified by its customers, recent sampling-based techniques have been
developed ( [9,26]) that allow third party applications to issue queries
to the search interface (queries are randomly selected from a query
pool), and from the answers piece together big-picture aggregate
information about the underlying corpus. Although in some cases
it is advantageous to have such aggregate information disclosed,
there are others for which an enterprise would not willingly like to
disclose aggregate information through its search engine. To un-
derstand why, consider the following examples.

• Commercial Competition: Many online retailers allow a cus-
tomer to search for keywords in product reviews left by other
customers, so that the customer can quickly locate products
with desired properties. Nonetheless, the retailer may not
want a competitor to learn certain aggregate information which
places the retailer in a disadvantageous position for compe-
tition - e.g., if the competitor learns that the total number of
products in the retailer’s website which have ”poor quality"
in a user review is twice as large as the number in the com-
petitor’s own website, then the competitor may use the in-

1For keyword search over structured data, note that while there has
been recent work [16] on supporting keyword search over the JOIN
of multiple tables, most real-world search engines simply consider
each tuple as a document consisting of all attribute values of the
tuple, and process the keyword-search query in (almost) the same
way as search over unstructured documents.
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formation against the retailer through boasting ”fewer poor-
quality products", etc., in an advertisement campaign.

• Government Concern: Many government agencies support
individual searches for legal compliance purposes, but may
not be willing to disclosure aggregate information that can
lead to speculative rumors or negative publicity. For ex-
ample, US Patent and Trademark Office supports keyword
search for patents, with the patent examiner’s name displayed
on the description of each returned patent. Nonetheless, the
office may not want to disclose aggregates such as the to-
tal number of patents approved by a particular examiner in
2010, because such information may allow a third party to
infer (based on the common workload of a patent examiner)
sensitive information such as the approval rate of the exam-
iner - which may lead to negative publicity for the office.

To address the search engine owners’ concerns on sensitive ag-
gregates, we define and study a novel problem of search-engine ag-
gregate suppression in this paper - i.e., our objective is to suppress
a third party’s access to sensitive aggregates over a search engine’s
corpus without affecting the utility of the search engine to normal
search users. This problem stands in sharp contrast to existing stud-
ies on privacy protection for search engines which mostly focus on
protecting the privacy of individual users’ search query logs [4,18]
or preventing the search engine from learning a user’s real search
query [15, 23].

Note that while the problem of aggregate suppression (and, in
fact, our proposed techniques) may also apply to web-scale search
engines such as Google and Bing, in this paper we focus our at-
tention on enterprise search engines. This is mainly because the
privacy concerns of aggregate disclosure is more acute in the case
of the enterprise owners (as our earlier motivating examples show),
whereas the corpus of a web search engine is essentially a col-
lection of publicly crawlable web pages and aggregate disclosures
may not be as significant for web search engine owners.

Technical Challenge: A seemingly promising approach to achieve
aggregate suppression over a search engine is to directly apply the
two existing techniques for suppressing aggregates over structured
databases - (1) the insertion of dummy tuples [12] and (2) the (ran-
domized) generalization of tuple attribute values [17]. Nonetheless,
neither technique applies to unstructured documents in a search en-
gine’s corpus. In particular, generating a dummy document which
is not (at least not easily) recognizable as dummy by an adversary
is significantly more difficult than generating a structured dummy
tuple (which “looks” real). Likewise, there is no concept hierarchy
defined over an unstructured document - an important ingredient
of the generalization technique [17] - so the generalization tech-
nique does not apply either. Thus, the problem of search-engine
aggregate suppression calls for the development of novel privacy
preservation techniques.

Solution Space for Aggregate Suppression: One can partition
the solution space for aggregate suppression into two main types
of techniques: One is to revise the keyword search interface of
the search engine - e.g., by disallowing certain queries and/or re-
turning snippets instead of entire documents unless a user signs in
with a unique identity. While there are fee-based search engines in
practice which enforce such limitations to attract paying customers
(e.g., reverse phone lookup at http://www.whitepages.com/), we do
not consider this approach for our purpose of aggregate suppres-
sion because of the difficulty on evaluating the loss of service qual-
ity provided to normal search users - which by itself might be an

interesting problem for the Human-Computer Interaction (HCI) re-
search community.

The other type of solution, which we advocate in this paper, is
to revise the keyword-query processing mechanism by changing (a
small number of) documents returned for a given query. To this
end, we may add dummy documents, revise the content of returned
documents, or hide certain documents from the query answer. As
discussed above, we do not consider adding dummy documents due
to the difficulty of creating dummy contents that look “reasonable”
to an adversary. For the same reason, we do not consider revising
the content of a returned document. Thus, we focus on the last
option - i.e., hiding (a small number of) returned documents from
certain query answers.

Outline of Technical Results: To understand our main idea, we
first consider two simple techniques which achieve either aggre-
gate suppression or search utility but not both at the same time.
Consider as an example two search engines A1 and A2 with corpus
sizes n and 2n, respectively. Suppose that A1 is a simple random
sample (without replacement) from A2. Consider an objective of
suppressing access to the total size of each corpus (i.e., suppressing
access to the aggregate COUNT(*)), such that an adversary cannot
tell which corpus is larger. A brute-force approach of doing so
through document hiding is to first remove n documents from the
corpus of A2, and then answer each keyword query over A2 from
the shrunken corpus. This technique perfectly protects privacy by
making the two COUNTs indistinguishable, but may lead to poor
search utility over A2 because half of the documents in (the origi-
nal) A2 will never be returned by any query.

Another seemingly simple idea is to perform document hiding at
run-time. In particular, when a keyword query q is received by A2,
one first identifies the number of documents in A2 which match
q, denoted by |q|. Then, one selects and removes half of these
matching documents. The result - i.e., |q|/2 documents - are then
returned as the query answer (subject to top-k selection accord-
ing to the scoring function). This technique addresses the utility
problem of the brute-force technique because, even if a document
is severed from one query answer, it might still appear in another
one. This allows the number of documents recallable by keyword
queries to approach 2n. It might appear that this approach sup-
presses COUNT(*) as well, because the expected number of docu-
ments returned by a given query is the same over the two corpora
once run-time document hiding is applied over A2.

However, this approach actually fails on aggregate suppression.
To understand why, consider a pool of queries formed by all En-
glish words and a document X that appears in both A1 and A2.
For the ease of understanding, suppose that k is sufficiently large
such that no query in the pool is subject to the top-k restriction on
its returned results. Before run-time document hiding, the number
of queries in the pool which return X is the same over A1 and A2.
Nonetheless, once run-time document hiding is applied (over A2),
the number of queries which return X over A2 is (expectedly) re-
duced by half - making it easy for an adversary distinguish between
A1 and A2 by first finding all words in X and then issuing them
over A1 and A2, respectively, to find out which ones return X .

To address the problems of these two simple techniques, we de-
velop the aggregate suppression technique, AS-SIMPLE, which
suppresses aggregates by carefully adjusting both query degree,
i.e., the number of documents matched by a query, and document
degree, i.e., the number of queries matching a document, through
document hiding at run-time (i.e., when a query is received). In
terms of aggregate suppression, we prove that AS-SIMPLE can
thwart a large class of sampling-based aggregate estimation algo-
rithms including all the existing ones [9, 26]. In terms of search
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engine utility, we find (somewhat surprisingly) that most keyword
queries issued by real-world users2 only see minimum changes to
their answers. Intuitively, this is because most of these real-world
queries are overflowing ones which have their answers truncated
by the top-k restriction. As such, we can perform the necessary
adjustments to query/document degrees while hardly affecting the
k documents that are actually returned to the user.

Although AS-SIMPLE can thwart all existing aggregate-estimation
attacks, during the course of our investigations we found a new
(non-sampling-based) attack against AS-SIMPLE, which works by
issuing highly correlated queries - i.e., those which return signifi-
cantly overlapping, if not the same, sets of documents. To thwart
such a correlation-based attack, we develop AS-ARBI3 which, upon
receiving a query, first calls AS-SIMPLE as a subroutine to gener-
ate an initial query answer, and then post-processes it by appending
historic query answers which match the new query. We show that
AS-ARBI not only addresses the threat from correlation based at-
tacks in an efficient manner, but also provides better search engine
utility than AS-SIMPLE.

Summary of Contributions: Our contributions in the paper can
be summarized as follows.

• We define the novel problem of aggregate suppression over a
search engine’s corpus.

• We develop two novel techniques, AS-SIMPLE and AS-ARBI,
which are capable of suppressing access to sensitive aggre-
gates while maintaining a high level of utility for individual
search queries.

• Our contributions also include a comprehensive set of exper-
iments on a real-world document corpus. The experiments
validate the effectiveness of our techniques on (1) aggregate
suppression against multiple existing aggregate estimation
techniques, and (2) maintaining search engine utility for a
real-world keyword query log.

The rest of this paper is organized as follows. We discuss the
preliminaries in Section 2 and define our problem in Section 3. In
Sections 4 and 5, we develop AS-SIMPLE and AS-ARBI, respec-
tively, and present theoretical analysis on their ability of suppress-
ing aggregates and maintaining search engine utility. We describe
the experimental results in Section 6, followed by a brief review of
related work in Section 7 and conclusions in Section 8.

2. PRELIMINARIES
In this section, we first introduce our model of an enterprise

search engine, and then briefly review the existing attacks for ag-
gregate estimation over a search engine’s corpus.

2.1 System Model
Search Engine: Consider a search engine accessible by web users
through a keyword-search interface. Let Θ be the search engine’s
corpus - i.e., the set of documents searchable through the interface.
A user can search for documents in Θ by specifying a search query
consisting of one or a few words. For the purpose of this paper,
we consider a simple model of a search engine as follows: The
interface is restricted to return up to k documents, where k is a pre-
determined small constant (e.g., 50 or 100). Thus, for a given query
q, all documents matching q, i.e., Sel(q), can be entirely returned

2We conducted experiments using a well-known real-world query
workload, the AOL query log, which is described in Section 6.1.
3where ARBI stands for arbitrary (queries)

iff there are at most k matching documents, i.e., |Sel(q)| ≤ k. If
the query overflows (i.e., |Sel(q)| > k), only the top-k documents
in Sel(q) are selected according to a scoring function (unknown to
external users) and returned as the query answer. The interface also
notifies the user that there is an overflow. At the other extreme, if
the query is too specific and matches no document, we say that an
underflow occurs. If there is neither overflow nor underflow, we
have a valid query result. We consider deterministic query process-
ing - i.e., a query executed again will produce the same results.

For the purpose of this paper, we assume that a restrictive in-
terface does not allow the users to “scroll through” the complete
answer Sel(q) when q overflows. Instead, the user must pose a
new query by reformulating the search phrase. We argue that this
is a reasonable assumption because many real-world top-k inter-
faces (e.g., Google) only allow “page turns” for limited (e.g., 100)
times before blocking a user by IP address.

Another restriction commonly enforced by search engines is a
limit on the number of (keyword) queries one can issue for a given
time period. For example, Google’s SOAP and JSON search APIs
enforce a limit of 1,000 and 100 queries per user per day, respec-
tively [2].

Query Pool: Most existing attacks for aggregate estimation use
a query pool Ω which is a rich collection of queries that recall4

most, if not all, documents in the corpus. The existing attacks [8,
9, 26] construct such a query pool by crawling an online directory,
e.g., Open Directory Project [1]. Note that if a query pool cannot
recall all documents in the corpus, then an aggregate estimation
attack can only aim to analyze the subset of documents that can be
recalled. Thus, for the purpose of this paper, we consider the worst-
case scenario where an adversary is capable of finding a query pool
that recalls all documents in the search engine’s corpus.

Bipartite Graph Model: To help understand the design of aggre-
gate estimation attacks which we shall review next, we introduce
a model of bipartite graph formed by two classes of nodes corre-
sponding to queries in the pool and documents in the corpus, re-
spectively. An edge exists between a query node and a document
node iff the query returns the document in its answer. Figure 1 de-
picts a simple example of such a graph. Here k = 2, and we only
consider single-word queries in the example for the sake of sim-
plicity. Note that dotted lines are only for illustrating “matching”
relationship, and do not represent edges in the bipartite graph.

Given the bipartite graph, one can see that the sensitive aggre-
gates are defined over nodes on the right side of the graph (i.e.,
documents), while an adversary can only “operate on” the left side
(i.e., issue queries). As such, the main method taken by the exist-
ing aggregate estimation attacks is to study the topology of edges
connecting the two sides - a topology which is determined by the
query processing mechanism - and to infer the right-hand-side ag-
gregates based on the topology. Correspondingly, our main idea of
aggregate suppression, as we shall further illustrate in the paper, is
to make minimum revisions to such a topology while “misleading”
the adversarial estimation on the right side as much as possible.

2.2 Aggregate Estimation Attacks
We now briefly review a brute-force attack and a state-of-the-art

sampling-based attack for aggregate estimation. Note that while
we shall formally define the sensitive aggregates to be protected
in Section 3.1, here we use COUNT(*) - i.e., the number of doc-
uments in the corpus - as the example for reviewing the attacks.
Extensions to other aggregates are fairly straightforward [9].

4
A document is recalled if at least one query in the pool returns it.
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Figure 1: An Example of Bipartite Graph

Brute-Force Attack: We start with a simple brute-force attack for
the purpose of illustrating how the above-described restrictions on a
keyword-search interface makes aggregate estimation a subtle task.
Consider a brute-force attack which exhaustively issue all queries
in the query pool, with the purpose of first crawling all documents
from the corpus and then generating the aggregate estimations of-
fline. This brute-force attack does not work in practice because of
the two limitations set forth by the interface on the number of doc-
uments returned by a query and the number of queries issued by
a user, respectively - which essentially enforce an upper bound on
the number of documents a user can crawl (e.g., from an IP ad-
dress) before being blocked. Since the number of documents in
a real-world enterprise search engine’s corpus is usually orders of
magnitude larger than this upper bound, the brute-force attack can-
not crawl a large percentage of documents from the corpus.

Sampling-Based Attacks: We now review a sampling-based at-
tack [9] which we refer to as UNBIASED-EST, in the context of
estimating COUNT(*). Consider the weight w(e) of each edge e
in the graph as inverse of the degree of right-side node associated
with the edge. In Figure 1, the weight of edge connecting “X3” and
“Linux” is 1/2 because the degree of X3 is 2. Then, the objective
of counting the number of documents becomes estimating the SUM
of all edge weights in the graph.

UNBIASED-EST does so by first selecting a query q uniformly
at random from the pool Ω, and then estimating w(e) for all edges
associated with q. Note that SUMe:〈q,·〉(w(e)) · |Ω|, where {e :
〈q, ·〉} is the set of all edges associated with q and |Ω| is the total
number of queries in the pool, is a unbiased estimation of COUNT(*).
UNBIASED-EST estimates w(e) with a second-round sampling
process: In particular, for a given edge e, one first determines
the set of queries that match the right-side document X of e. Let
M(X) be such a set. Then, UNBIASED-EST repeatedly selects a
query uniformly at random from M(X) and issues it until finding
one that actually returns X . Suppose that t queries (from M(X))
have been issued at this time. UNBIASED-EST approximates w(e)
by t/|M(X)|.

There has also been more recent work, e.g., STRATIFIED-EST
[26], which improves the efficiency and accuracy of estimating
w(e) by applying stratified sampling techniques. While we shall
test our aggregate suppression techniques against this state-of-the-
art attack in Section 6, we mainly use UNBIASED-EST as the run-
ning example (of attack) throughout the paper. Again, note that
the privacy guarantee achieved by our aggregate suppression tech-
niques is generic to all possible attacks (under subtle limitations
explained in Section 3.3), instead of being limited to the existing
ones.

3. PROBLEM DEFINITION

3.1 Objective of Aggregate Suppression
Our objective is to suppress aggregates of the form QA : SE-

LECT AGGR(*) FROM C WHERE selection_condition, where C
is the search engine’s corpus and selection_condition is a Boolean
function which takes a document X ∈ C as input and outputs
whether the document is included as input to the aggregate function
AGGR - e.g., if the selection condition is to whether a document’s
length exceeds 1,000 words and AGGR is COUNT, then the ag-
gregate query returns the total number of documents in the corpus
which has length greater than 1,000 words. In this paper, we focus
on COUNT and SUM as the aggregate function. Let Res(QA)
be the answer to QA. As discussed in Section 1, due to privacy
concerns the owner of an enterprise search engine may consider
certain QA to be sensitive and would not willingly disclose their
results. Throughout the paper, we use QA: SELECT COUNT(*)
FROM D as a running example, while showing that a simple exten-
sion exists to other COUNT and SUM aggregates with or without
selection conditions.

To quantify the degree of aggregate disclosure, we consider a
(ε, δ, c)-privacy game similar in spirit to the privacy game notions
in [12, 17, 19]. For a sensitive QA, consider three steps:

1. The owner applies its aggregate-suppression technique.

2. The adversary issues at most c keyword search queries and
analyzes their answers to try and estimate Res(QA).

3. The adversary wins if ∃x such that the adversary has con-
fidence > δ that Res(QA) ∈ [x, x + ε]. Otherwise, the
defender wins.

Based on the (ε, δ, c)-game notion, we define the aggregate sup-
pression guarantee for an enterprise search engine as follows:

DEFINITION 1. We say that an aggregate-suppression technique
achieves an (ε, δ, c, p)-guarantee if and only if for any sensitive ag-
gregate QA and any adversary PA,

Pr{PA wins (ε, δ, c)-privacy game for QA} ≤ p. (1)

The probability is taken over the (possible) randomness in both the
aggregate-suppression scheme and the attacking strategy. One can
see that the greater ε is or the smaller δ, c and p are, the more pro-
tection a (ε, δ, c, p)-privacy-guarantee has to provide on sensitive
aggregates.

3.2 Objective of Utility Preservation
In addition to suppressing the sensitive aggregates, we must also

maintain a high level of utility for bona fide search engine users
by limiting the amount of changes to each search query answer.
A document-hiding based technique like ours may introduce two
types of errors: (1) false negatives - i.e., we might remove from a
query answer a document which originally appears in the top-k list,
and (2) false positives - i.e., we may add to the answer a document
which originally ranks below the top-k results5. To quantify the
errors, we consider two utility measures, recall and precision:

DEFINITION 2. For a given sequence of search queries q1, . . . , qh,

5Note that a document-hiding based technique never returns a doc-
ument that does not “match” the input query.
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the recall and precision of an aggregate suppression technique are

recall =
h∑

i=1

|Res(qi) ∩ResAS(qi)|
h · |Res(qi)| . (2)

precision =

h∑
i=1

|Res(qi) ∩ResAS(qi)|
h · |ResAS(qi)| . (3)

where Res(·) and ResAS(·) are the answers to a query before and
after aggregate suppression, respectively.

We shall study the recall and precision measures in both theoret-
ical analysis and experimental studies. In addition, in experiments
we shall also test rank distance [20] which has been extensively
used to measure the quality of top-k query answers in literature.

3.3 Taxonomy of Adversaries
We consider two types of adversaries, SIMPLE-ADV and ARBI-

ADV, in this paper. We start with SIMPLE-ADV which summa-
rizes all existing aggregate estimation attacks over search engines.
According to SIMPLE-ADV, an adversary possesses as prior knowl-
edge a pool of queries. We require this query pool to satisfy two
conditions: (1) it must recall all or a large percentage of documents
in the corpus, and (2) for each document in the corpus, the number
of queries in the pool which return it cannot exceed a small constant
dmax. The existing attacks, UNBIASED-EST and STRATIFIED-
EST, satisfy both conditions. Note that the second condition is sat-
isfied by the existing attacks for two reasons: (1) they use phrase
queries of a fixed length to form the query pool, essentially lim-
iting dmax to the length of a document, and (2) since the existing
attacks need to compute or estimate the number of queries return-
ing a document, they have to keep dmax small in order to make the
computation/estimation process efficient.

To launch an aggregate estimation attack, a SIMPLE-ADV ad-
versary chooses a query uniformly at random from query pool,
retrieves all documents returned by the query, and then, for each
returned document, investigates (i.e., computes or estimates) the
total number of other queries which also return the document. Fi-
nally, the adversary produces an estimation based on three inputs:
(1) the number of documents returned by each issued query, (2)
the aggregate measure6 over each retrieved document, and (3) the
number of other queries which return each retrieved document. A
formal model of SIMPLE-ADV will be introduced in Section 4.1.
One can see that both existing attacks - i.e., UNBIASED-EST and
STRATIFIED-EST - follow this SIMPLE-ADV model7.

In addition to SIMPLE-ADV, we also consider ARBI-ADV which
allows the adversary to issue an arbitrary set of queries and then
produce an estimation based on the same three inputs as described
above for SIMPLE-ADV. Note that the above-described two limi-
tations on the query pool no longer apply, and the adversary does
not necessarily select queries uniformly at random from the query
pool.

3.4 Problem Statement
Our objective is to achieve (ε, δ, c, p)-privacy guarantee against

SIMPLE-ADV (resp. ARBI-ADV) adversaries while maximizing re-
call and precision for a bona fide workload of search queries.
6e.g., 1 if COUNT is the aggregate function, the document length
if SUM(doc_length) is the aggregate function.
7Note that while UNBIASED-EST requires one query pool that
recalls almost all documents in the corpus, STRATIFIED-EST uses
a small number of disjoint query pools, each representing a stratum.
Nonetheless, both algorithms follow the SIMPLE-ADV model by
choosing queries uniformly at random from each query pool.

(a) Dataset S, original graph (b) Dataset 2S, original graph

(c) Dataset S, after q3 is issued

q1

q2

q3

q4

D1

D2

D3

D1

D2

D3

D4

D5

D6

D1

D2

D3

D4

D5

D6

D1

D2

D3

q1

q2

q3

q4

q1

q2

q3

q4

q1

q2

q3

q4

(d) Dataset 2S, after document hiding

a query returns a document
a query matches but does not return a documentoverflow valid

Figure 2: Running Example

4. AS-SIMPLE
In this section, we describe our main techniques for thwarting ag-

gregate estimation attacks launched by a SIMPLE-ADV. We shall
first develop the basic ideas of our defense using a two-corpora ex-
ample, and then present the generic AS-SIMPLE algorithm. We
shall also demonstrate a case study of how AS-SIMPLE thwarts
the existing UNBIASED-EST attack, and derive the privacy and
utility guarantees AS-SIMPLE achieves.

4.1 Basic Ideas of AS-SIMPLE
For the ease of understanding, we start with considering an ad-

versary that aims to estimate the size of a search engine’s corpus.
Consider a running example depicted in Figure 2, where corpora S
and 2S differ twice in their sizes. One can see that, if an adversary
is capable of accurately estimating a search engine’s corpus size,
it must be able to distinguish S and 2S based on the search query
answers it receives from the two search engines. Thus, we consider
a SIMPLE-ADV’s ability of distinguishing between S and 2S as
a running example throughout this section. In particular, we start
with discussing how an adversary can make such a distinction, and
then describe our basic ideas for document hiding which makes S
and 2S indistinguishable from the view of a SIMPLE-ADV, unless
the adversary issues an extremely large number of queries. One can
see that this essentially thwarts size estimation attacks by SIMPLE-
ADV over the two corpora.

How Attack Works: Recall from our taxonomy of adversaries in
Section 3.3 that, for size (i.e., COUNT) estimation, a SIMPLE-
ADV relies on two inputs: (1) the number of documents returned
by each query the adversary issues, and (2) the number of queries
which returns each document the adversary retrieves. With the bi-
partite graph model depicted in Figure 2, the two inputs are corre-
sponding to the degree of a left-hand-side (LHS) node (i.e., a query)
and a right-hand-side (RHS) node (i.e., a document), respectively.

Intuitively, one can see that the larger the LHS degrees are, the
higher the COUNT estimation should be because more documents
are retrievable by queries in the pool. On the other hand, the higher
the RHS degrees are, the lower the COUNT estimation should be
because more overlapping occurs between documents returned by
different queries. For the example of S and 2S, if no overflow
happens on the search queries (i.e., when k is sufficiently large),
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the LHS degree over 2S is (expectedly8) twice as much as that over
S, while their RHS degrees are (expectedly) the same - making it
easy for a SIMPLE-ADV to distinguish between the two corpora
based on their different LHS degrees9.

Key Challenges for Defense: Recall from the introduction sec-
tion a seemingly simple idea to thwart SIMPLE-ADV from mak-
ing the distinction: for each query q received by the search engine,
instead of applying top-k filtering over all |q| documents matching
the query, one first selects |q|/2 documents from the matching ones
(and “hides” the other half), and then applies top-k filtering over the
|q|/2 documents to produce the final query answer R(q). After ap-
plying this idea over the running example, the bipartite graphs over
S and 2S are depicted in Figure 2(a) and (d), respectively. One
can see that this idea equalizes the LHS degrees over both S and
2S. Nonetheless, as we explained in Section 1, it fails on aggre-
gate suppression because, by reducing the LHS degree over the 2S
corpus, this approach also reduces the RHS degrees of the 2S doc-
uments (by half when no overflow occurs - as one can observe from
Figure 2(a) and (d)) - enabling adversarial distinction based on the
RHS degrees.

An observation from the failure of this simple approach is that,
to truly make S and 2S indistinguishable from each other, a aggre-
gate suppression technique must equalize both LHS and RHS de-
grees over the two corpora. Unfortunately, this requirement brings
the key challenge for defense - as it is impossible to do so perfectly
without significantly sacrificing the utility of search engines. To un-
derstand why, note that the number of LHS nodes - i.e., the number
of queries in the pool - are constant over any corpus. Thus, equal-
izing LHS degrees means equalizing the number of edges, which
in turn leads to equal number of RHS nodes (i.e., documents) when
RHS degrees are equal. In other words, the only way to perfectly
equalize both LHS and RHS degrees is to completely removes S
documents from the 2S corpus - an approach which comes with
significant utility loss, as we argued in Section 1.

Given the inherent difficulty of perfectly equalizing LHS and
RHS degrees, the design objective of a document hiding technique
should be to delay a SIMPLE-ADV from making the distinction
until it issues an extremely large number of queries. We describe
the main idea of AS-SIMPLE for doing so as follows. Note that in
the description, without causing ambiguity, we use term edges and
degrees to refer to matching relationships between a query and a
document - i.e., both solid and dotted lines in Figure 2.

Main Idea of AS-SIMPLE: Unlike the above-described simple
approach, AS-SIMPLE performs document hiding over both S and
2S corpora. For the 2S corpus, AS-SIMPLE employs the same
procedure as the simple approach - i.e., removing half of all edges
connected to a query. Note that one may select the removed edges
as the ones corresponding to the lower-ranked documents, in order
to preserve utility for bona fide users. Figure 2(d) shows for the
running example the bipartite graph after document hiding over 2S.
For the S corpus, AS-SIMPLE removes half of all edges connected
to a document (i.e., hiding the document from half of all matching
queries) after the document is returned for the first time.

Unlike in the 2S case, edge removal over S cannot be done deter-
ministically at once because the defender does not have knowledge
of the query pool used by the attacker (and therefore does not know

8Recall that the corpus S is sampled without replacement from 2S.
The expected values mentioned in this paragraph are taken over the
randomness of this sampling process.
9With a smaller k (and therefore overflowing queries), the LHS
and RHS degrees over both corpora may decrease because of the
overflows, with the decrease over 2S being slightly higher, as more
queries are likely to overflow over the larger corpus.

which edges to select from for removal - or even how many edges
to remove). Instead, AS-SIMPLE performs edge removal over S in
an online fashion. In particular, since the second time a document
is returned, there is a 50% chance for the document to be removed
from the query answer (and replaced with a lower-ranked document
if the query overflows). One can see that this online approach pro-
duces an equivalent bipartite graph as the original description. For
the running example, Figure 2(c) depicts the bipartite graph once
document hiding is performed after q3 is processed.

We now first discuss the motivation for AS-SIMPLE to add doc-
ument hiding (i.e., edge removal) over S, and then explain why
it effectively delays the adversarial distinction of S and 2S. The
main purpose for performing edge removal over S is to avoid the
pitfall of the simple approach - in particular, one can see that the
edge removal process reduces the RHS degrees over S to the same
level as 2S after document hiding (e.g., for D3 over Figures 2(c)
and (d) after q3 is issued). This prevents an adversary from making
the distinction based on RHS degrees.

Nonetheless, it is equally important to note that this edge re-
moval process cannot prevent the distinction forever. To under-
stand why, note that the removal of edges over S reduces not only
the RHS degrees of documents but also the LHS degrees of many
queries as well. Since AS-SIMPLE performs edge removals over
S after a document is returned for the first time, if an adversary
tracks the LHS degrees of S and 2S over time, it may discover
that, while the LHS degrees over 2S remains (expectedly) con-
stant, the LHS degrees over S keeps decreasing over time - en-
abling the adversarial distinction between S and 2S. Again, this
distinction is ultimately inevitable because, when an adversary is-
sues enough queries to crawl the two corpora, it will certainly de-
tect either smaller LHS degrees for S, or smaller RHS ones for
2S. Nonetheless, a key question remains - how many queries will
a SIMPLE-ADV have to issue before reaching distinction.

Fortunately, our analysis shows that a SIMPLE-ADV needs to
issue an extremely large number of queries before making the dis-
tinction. While the formal results will be presented in Section 4.4,
we provide an intuitive explanation here as follows. Consider how
an adversary can identify the LHS degrees of S being smaller. Note
that any query which has a substantially smaller degree over S than
2S (after document hiding) must return a significant number of
documents that the adversary has retrieved before. Nevertheless,
since the query pool for SIMPLE-ADV is built such that each doc-
ument is only returned by a small number of (≤ dmax) queries,
and a SIMPLE-ADV chooses queries uniformly at random from
the pool, it needs to retrieve an expected number O(

√|S|/dmax)
unique documents from S before hitting one document that has
been previously retrieved, where |S| is the number of documents in
S and satisfies |S| 	 k and |S| 	 dmax in practice. In addition,
one can see that an adversary cannot identify the LHS degrees of
S being lower based on just one repetitive document - instead, a
significant number is needed given the inherent variance of LHS
degrees for different queries. Thus, after AS-SIMPLE is deployed,
a SIMPLE-ADV needs to issue a very large number of queries be-
fore making the distinction.

4.2 Algorithm AS-SIMPLE
We now describe how to generalize the basic idea of AS-SIMPLE

to a practical algorithm in three steps: First, we show how it can be
used to obfuscate two corpora with COUNT differing by γ times,
where γ is the obfuscation factor measuring how stringent the ag-
gregate suppression guarantee is - in particular, the larger γ is, the
more stringent the suppression guarantee will be. We shall also ex-
plain in this part how our idea can obfuscate any corpus size falling
in the range of [|S|, γ · |S|]. Second, we note that our idea de-
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Algorithm 1 AS-SIMPLE

1: Input: Corpus size n, obfuscation factor γ
2: ΘR ← φ. //set of documents returned before
3: Wait for input query q.
4: Compute μ ← n/γ�logn/ log γ�.
5: M(q) ← the set of min(|q|, γ · k) highest ranked documents

matching q.
6: Res(q) ← M(q).
7: for each document D in Res(q) do
8: if D ∈ ΘR then
9: with 1− μ/γ probability, remove D from Res(q).

10: else
11: ΘR = ΘR ∪ {D}.
12: end if
13: end for
14: Remove max(|Res(q)|−1/μ · |M(q)|, |Res(q)|−k) lowest-

ranked documents from Res(q).
15: return Res(q) as the answer to q. Goto 3

scribed above calls for different document hiding procedures over
S and 2S. Since a real-world search engine only has one corpus
and thus one size, we explain here how a defender can determine
which procedure to apply. Finally, we explain why the suppression
of COUNT(*) also leads to the suppression of answers to other
COUNT and SUM queries with or without selection conditions.
Algorithm 1 depicts the generalized AS-SIMPLE algorithm.

Arbitrary Obfuscation Factor γ: Observe from the basic idea
that the main procedure followed by AS-SIMPLE on manipulat-
ing LHS and RHS degrees can be summarized as follows: For the
larger corpus (e.g., 2S), AS-SIMPLE reduces its LHS degrees to
the same level as those over the smaller corpus. For the smaller
corpus (e.g., S), AS-SIMPLE reduces its RHS degrees to the same
level as those over the larger corpus (after document hiding). The
same procedure can be followed to obfuscate all corpora of sizes
falling in the range of [|S|, γ · |S|] for an arbitrary γ. In particu-
lar, given a corpus of size μ · |S| (μ ∈ [1, γ]), AS-SIMPLE first
reduces its RHS degrees to the same as those over γS - by remov-
ing (1 − μ/γ) of all edges associated with each document. Then,
AS-SIMPLE reduces its LHS degrees to the same as those over S
- by removing (1 − 1/μ) of all edges associated with each query.
One can see that, when γ = 2, this procedure is reduced to the
above-described ones for S and 2S, respectively, when μ = 1 and
2. Another observation is that the larger γ is, the less utility will
be preserved for bona fide search users (as a tradeoff for the more
stringent suppression guarantee).

Indistinguishable Segments: For a given corpus, AS-SIMPLE
first finds a pre-determined indistinguishable segment it belongs
to based on the size of the corpus, and then apply document hid-
ing according to the segment. In particular, given a user-input ob-
fuscation factor γ, we consider indistinguishable segments [1, γ],
[γ, γ2], . . . , [γi, γi+1], . . . As such, a corpus of size n will fall into
the �log n/ log γ
-th segment. Then, we apply document hiding
according to the procedure outlined above for obfuscating this seg-
ment.

Other COUNT and SUM queries: One can see that the suppres-
sion of COUNT(*) also extends to other COUNT and SUM queries
with or without selection conditions, because by emulating a corpus
of size γ times as large, AS-SIMPLE simultaneously “enlarges” all
other COUNT and SUM aggregates for the same (expected) ra-
tio. We formally derive the suppression guarantee provided by AS-
SIMPLE at the end of this section.

4.3 Case Study Against UNBIASED-EST
We now conduct a case study of AS-SIMPLE against an existing

aggregate estimation attack. For the sake of simplicity, we choose
UNBIASED-EST for the case study. Note that our AS-SIMPLE
algorithm is not designed specifically for defending against this at-
tack. It effectively thwarts a broad class of SIMPLE-ADV adver-
saries, as we shall prove in the suppression guarantee at the end
of this section. In addition, we shall also demonstrate in the ex-
perimental results that AS-SIMPLE can also effectively thwart the
other existing attack, STRATIFIED-EST.

Consider again the running example depicted in Figure 2 and an
adversary which runs UNBIASED-EST to estimate the total num-
ber of documents in the corpora. Suppose that the first query ran-
domly chosen by the adversary is q3. We first follow the procedure
reviewed in Section 2.2 for UNBIASED-EST to compute the ad-
versarial estimations from q3 before AS-SIMPLE is applied. For
S, the adversary retrieves 1 document D3 from q3. Since D3 has
a degree of 2, the edge 〈q3, D3〉 is assigned a weight of w = 1/2.
Given that the query pool contains |Ω| = 4 queries, the adversarial
estimation becomes |S| ≈ |Ω| · w = 4× 1/2 = 2. Similarly, over
2S, q3 returns two documents: D3 with (return) degree of 2 and
D5 with (return) degree of 1. The total weight of edges associated
with q3 then becomes w = 1/2 + 1 = 3/2. Thus, the adversarial
estimation becomes |2S| ≈ |Ω| · w = 6. One can see that the esti-
mation over 2S is twice as much as that over S, clearly indicating
the adversary’s ability to make the distinction.

Now compute the estimation generated by UNBIASED-EST af-
ter AS-SIMPLE is applied. We consider 2S first. After document
hiding, q3 only returns one document D5, which has a degree of
1. Thus, the adversarial estimation is |2S| ≈ 4 × 1 = 4. For
S, note that since q3 is the first query being issued, the topology
of the bipartite graph remains unchanged (i.e., no removed edges)
when q3 is being processed. Thus, q3 retrieves one document D3.
Nonetheless, immediately afterwards, half of all edges associated
with D3 are removed - e.g., as one can see from the figure, edge
〈q4, D3〉 is removed in the example. As such, when the adversary
now computes or estimates the degree of D3, the result it obtains is
1. In turn, the adversarial estimation becomes |S| ≈ 4×1 = 4, ex-
actly the same as the estimation over 2S, indicating the adversary’s
inability to distinguish between the two corpora.

While we do not repeat the case study for all other queries, we
do want to point out that, as one can verify using the topology of
2S after document hiding, UNBIASED-EST indeed remains unbi-
ased (and accurate) over 2S even after AS-SIMPLE is applied10.
The effectiveness of AS-SIMPLE on thwarting UNBIASED-EST
is actually enabled by its ability to “disguise” UNBIASED-EST
into overestimating COUNT(*) on S. While a small example like
Figure 2 is not the best way to demonstrate the power of disguise
because soon the adversary can crawl all documents, one can actu-
ally observe the source of overestimation from the above-described
example of issuing q3. Note that when the adversary issues q3,
according to the topology of the bipartite graph as depicted in Fig-
ure 2(a), edge 〈q3, D3〉 has a weight of 1/2. Nonetheless, when
the adversary winds up estimating this weight, it has become 1 be-
cause of the edge removals performed by AS-SIMPLE. This leads
to a twice-overestimation by UNBIASED-EST over S, and pre-
vents the adversary from making the distinction between S and 2S
until issuing a large number of queries (over a much larger query
pool and corpus than depicted in the example, of course).

10The estimations from q1, . . . , q4 are 8, 4, 4, 8, respectively, lead-
ings to an unbiased expected value of 6, the real COUNT(*).
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4.4 Performance Analysis
Privacy Guarantees: We now derive a spectrum of 〈ε, δ, c, p〉-
aggregate suppression guarantees AS-SIMPLE achieves against the
broad class of SIMPLE-ADV adversaries.

THEOREM 4.1. Given a search engine with corpus of size n
and a top-k interface, for any sensitive COUNT or SUM aggregate
with value qA and any δ ∈ [0, 1], AS-SIMPLE with an amplifica-
tion factor γ achieves 〈γ�logn/ log γ� · δ · qA/n, δ,

√
n/(dmax · k),

50%〉 aggregate suppression guarantee against any SIMPLE-ADV
adversary which has its query pool having a maximum RHS degree
of dmax.

Due to the space limitation, we do not include theorem proofs in
the paper. The theorem extends our above-mentioned intuition to
show that, for a real-world enterprise search engine, the adversary
needs to issue a very large number of queries in order to obtain an
accurate estimate of SUM and COUNT aggregates - this effectively
thwarts the aggregate estimation attacks from SIMPLE-ADV.

Utility for Bona Fide Search Users: We now consider the utility
provided by AS-SIMPLE to bona fide search users according to
recall and precision, the two utility measures defined in Section 3.2.

THEOREM 4.2. Given an amplification factor γ and a work-
load11 of bona-fide search queries ΩB which returns an average
of d documents, and includes ργ · |ΩB| queries that match more
than γ · k documents as well as ρO · |ΩB| queries that overflow
(ρO ≥ ργ), AS-SIMPLE achieves

recall ≥ min

[
ργ · (γ − 1) + 1

γ
,
d · |ΩB|+ (γ − 1) · n1

γ · d · |ΩB|
]

(4)

precision ≥ 1−
(
1− 1

γ

)
· ρO. (5)

over any search engine’s corpus where n1 is the number of docu-
ments returned exactly once by the query workload.

One can see from the theorem that, consistent with our intuition
on the tradeoff between utility and aggregate suppression, the larger
the amplification factor γ is, the worse the utility of AS-SIMPLE
will be - indicating a tradeoff between aggregate suppression and
search utility.

5. AS-ARBI
In this section, we consider a broader set of ARBI-ADV ad-

versaries which may construct an arbitrary query pool and issue
query from them according to arbitrary distribution. In particular,
we shall first describe an attack against AS-SIMPLE using a query
pool consisting of highly correlated queries - i.e., queries which
return largely overlapping documents. Then, we shall present the
main idea of AS-ARBI and explain how it addresses the correlated-
query based attack.

5.1 An Attack Against AS-SIMPLE
Before describing the attack, we first recall from the above sec-

tion the main reason why AS-SIMPLE cannot thwart the aggregate
estimation attacks forever - because of the document hiding proce-
dure taken by AS-SIMPLE, the more queries an adversary issues,
the lower the LHS degrees will be over S. Eventually, after an
adversary issues a large number of queries, the LHS degrees over
S would be substantially lower than those over 2S - enabling the
adversarial distinction between the two corpora. The main idea of

11Note that the workload may contain duplicate queries.
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Figure 3: Example of Attack

the attack is to push this reduction of LHS degrees over S to the
extreme - in particular, it uses a specially designed query pool to
rapidly reduce the LHS degrees over S when an adversary issues
only a small number of queries.

In particular, Figure 3(a) depicts an example of the specially de-
signed query pool. The key property here is that the queries in the
pool are strongly correlated - i.e., the documents returned by all
queries in the pool significantly overlap with each other. The mo-
tivation for having this property is explained in Figure 3(b), which
depicts the bipartite graph after q1 is issued when the corpus falls
on the lower end of an indistinguishable segment (i.e., serve as S
in the two-corpora case). Specifically, one can see that the overlap-
ping query answers make the LHS degrees of all queries in the pool
to decrease significantly after the processing of just one query (q1).
As a result, the adversary can quickly distinguish this corpus from
one γ times as large - disclosing aggregate COUNT(*).

It is important to note that this attack by no means contradicts
our aggregate suppression guarantees derived in Section 4, because
the query pool used in the attack clearly violates our definition of
SIMPLE-ADV. In particular, the SIMPLE-ADV model requires (1)
the queries to recall a large percentage of documents in the query
pool, and (2) the adversary to issue queries chosen uniformly at
random from the pool. Thus, even if q1, . . . , q4 in Figure 3 are in a
query pool constructed by a SIMPLE-ADV, they would only form
a rather small portion of the pool. As such, it is highly unlikely for
an adversary to issue multiple queries in q1, . . . , q4, and thereby
make a successful attack, before issuing a large number of queries.

Nonetheless, we would also like to remark that, as we shall demon-
strate in the experiments section, it is indeed possible to construct
queries like q1, . . . , q4 and launch such a correlated-query based at-
tack in practice. Specifically, while the adversary cannot precisely
determine the precise overlapping of query results before actually
issuing these queries to the search engine, it is possible for the ad-
versary to infer the potential overlaps by analyzing an external (lin-
guistic) corpus of documents. Our tests in the experiments section
show that an adversary can quickly observe the reduction of LHS
degrees by issuing these correlated queries.

5.2 Basic Idea of AS-ARBI
Before introducing the main idea of AS-ARBI, we start with de-

scribing a simple yet effective method for defending against the
attack. Since the attack aims to use a small number of queries to
repeatedly cover a small number of documents, a simple idea for
defense is to decline (i.e., refuse to answer) a query if the vast ma-
jority of documents it matches can be “covered” by a small number
of historic queries - i.e., for a query q, there exists at most m his-
toric queries q1, . . . , qm such that

|q ∩ (Res(q1) ∪ · · · ∪Res(qm))| ≥ σ · |q|, (6)

where q and Res(qi) represent the set of documents matched and
returned by a corresponding query, respectively, and both cover size
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m and cover ratio σ are pre-determined parameters (we shall ex-
plain how to find q1, . . . , qm in the next subsection). One can see
that, as long as we decline q over all corpora in an indistinguishable
segment (i.e., over both S and 2S in the two-corpora example), the
adversary cannot infer from the decline response whether there has
been a significant decrease of LHS degrees (because the response
would be the same even if the corpus is 2S and therefore has no
reduction of LHS degrees) - effectively thwarting the correlated-
query based attack.

Nonetheless, this simple idea comes at a major cost on utility.
In particular, note that different bona fide search users may indeed
issue similar yet different queries - e.g., “SIGMOD 2012”, “2012
SIGMOD”, “ACM SIGMOD 2012”, etc - which retrieve signifi-
cantly overlapping search results. Declining such queries will lead
to a significant drop on recall (to 0 for the declined query). To ad-
dress this deficiency, AS-ARBI features the idea of virtual query
processing which we describe as follows.

To understand how virtual query processing works, note that
if the adversary issued q1, . . . , qm, it already has query answers
Res(q1), . . . , Res(qm). Thus, even if the new query q is declined
by the search engine, the adversary can still figure out an answer by
itself through searching for documents which have been returned in
previously issued queries and match q.

An interesting observation here is that, since the search engine
does not disclose any information by declining the query, the adver-
sary will not learn anything extra from the self-constructed query
answer - i.e., it is safe for the search engine to provide the same
query answer to every user without violating the aggregate sup-
pression guarantee. As such, with virtual query processing, once a
query is declined, the search engine then processes the query “vir-
tually” by composing an answer from the historic ones. One can
see that doing so significantly increases utility (specifically, recall)
without affecting aggregate suppression. We shall discuss the de-
tails of virtual query processing in the next subsection.

5.3 Algorithm AS-ARBI

Algorithm 2 AS-ARBI

1: Input: Cover size m, cover ratio σ
2: ΩH ← φ. //historic query set
3: Wait for input query q.
4: if ∃{q1, . . . , qu} ⊆ ΩH (u < m) such that |q ∩ (Res(q1) ∪

· · · ∪Res(qu))| ≥ σ · |q| then
5: Return |q ∩ (Res(q1) ∪ · · · ∪ Res(qu))| (subject to top-k

filtering) as the answer to q.
6: else
7: Call AS-SIMPLE to answer q. ΩH ← ΩH ∪ {q}.
8: end if
9: Goto 3

Algorithm 2 depicts the AS-ARBI algorithm. One can see that
it essentially serves as a pre-processing step (of virtual query pro-
cessing) for AS-SIMPLE. We now discuss an implementation issue
for AS-ARBI on finding whether documents matching the current
query can be covered by (at most) m historic query answers - i.e.,
whether virtual query processing should be triggered.

First, we would like to note that the percentage of real search
queries triggering virtual query processing is usually small because
the trigger allows query q to match at most k ·m documents - dis-
qualifying a large number of broad (and overflowing) queries is-
sued by real search users. To further reduce the overhead of evalu-
ating the trigger, we maintain one string array and one binary vector
for each document. The string array stores all queries which have

returned the document. The binary vector is set to 1, 000 bits in our
experiments with initial values of 0. For each query which returns
the document, we hash the query string to a value in [1, 1000], and
then set the corresponding bit of the binary vector to 1.

Given the binary vectors, in order to determine whether a query
q satisfies the trigger, we first retrieve the |q| vectors corresponding
to the documents which match q. We then compute the SUM of
these vectors to produce a size-1,000 integer vector. After that, we
find the m largest values in the vector, and determine if the SUM
of these values exceeds σ · |q|. If not, one can see that q definitely
does not trigger virtual query processing. If the SUM does exceed
σ ·|q|, we then enumerate all size-m combinations of queries stored
in the string arrays to evaluate the trigger. Note that we choose to
perform simple enumeration instead of the approximate algorithms
for MIN-SET-COVER because, through experimental studies, we
found the input size to be very small in practice. In particular, we
shall show in practice that this trigger evaluation process incurs
minimum overhead even when the historic query set ΩH contains a
large number of queries.

Before concluding our discussions of AS-ARBI, we would like
to note a limitation of it - our ARBI-ADV model does not capture
all possible adversaries with arbitrary external knowledge - specif-
ically, because we limit what an ARBI-ADV can use for aggregate
estimation to the three inputs described in Section 3.3. For exam-
ple, consider an adversary which aims to compare the corpora size
of two news agencies. Suppose that one corpus C1 is actually a sub-
set of the other C2. Suppose that the adversary (somehow) learns
from external knowledge all documents in C2\C1. It is easy to
see that no effective defense is possible (other than actually shrink-
ing C2 to C1) because the adversary can always test a document
in C2\C1 can be returned by a search engine. This adversary is
not captured by our ARBI-ADV (and therefore not addressed in
this paper), because it uses information beyond the three inputs, in
particular the contents of returned documents, to make the aggre-
gate estimation. While we note the difficulty of dealing with such
adversaries, we leave as an open problem whether there exists any
“reasonable” aggregate estimation attack beyond ARBI-ADV, and
how to defend against such attacks if there does exist one.

6. EXPERIMENTS
We present our experimental results in this section. In particular,

we start with introducing the experimental setup, and then describe
our test results for AS-ARBI and AS-SIMPLE against all exist-
ing aggregate estimation attacks over various corpora of real-world
documents and real-world log of bona fide search queries.

6.1 Experimental Setup
Hardware and Platform: All of our experiments were performed
on two computers with Intel Core 2 Duo 2.4GHz CPU, 4GB RAM
and 32bit Windows 7 operating system. All algorithms were im-
plemented in C#.

Enterprise Search Engine: In all experiments, we used the pre-
loaded Windows Search 4.0 in Windows 7 as the search engine,
and used its default ranking function. For the top-k interface, we
set k = 5 by default, and also tested cases when k = 50.

Document Corpus: We followed the technique used in the prior
work for aggregate estimation attacks [8, 9, 26] to collect the doc-
ument corpora used in this paper. Specifically, we first crawled 1
million web pages from the ODP online directory [1]. Then, we
removed web pages with format other than htm, html and txt, web-
pages which contain fewer than 10 words (because most of them are
HTTP 404 error pages), as well as non-English webpages. Finally,
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Figure 8: UNBIASED-
EST&AS-ARBI: # docs vs
# queries
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Figure 9: UNBIASED-
EST&AS-ARBI: # docs vs
# queries
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Figure 10: AS-ARBI: re-
call&precision vs # queries
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Figure 11: STRATIFIED-
EST&AS-ARBI: # docs vs #
queries

we sampled without replacement 150,000 documents from the re-
sult to form the corpus for our experiments. In order to test cor-
pora of various sizes, we further sampled without replacement cor-
pora with sizes ranging from 1,000 to 125,250 from the 150,000-
document corpus.

Adversarial Query Pool: We constructed the adversarial query
pool according to the existing work on aggregate estimation at-
tacks [9, 26]. In particular, from the documents not chosen into
the 150,000-document corpus, we sampled without replacement
50,000 documents, and extracted a total number of 135,133 dif-
ferent words from them to form the query pool. We chose to use
single-word query pool in this paper mainly because it was demon-
strated in [26] that a single-word query pool enables efficient yet
accurate aggregate estimations.

Bona Fide Search Query: To test the effects of our algorithms on
preserving the utility of search engine for real search users, we eval-
uate the utility with a real-world search engine query log - the AOL
query log released by AOL Research in 2006 [3]. The log contains
contains queries issued by 650,000 users over a 3-month period. In
our experiments, we used the first 35,000 queries in the AOL query
log, and issued them consecutively to form our workload of bona
fide search queries.

Aggregate Estimation Attacks: We tested two aggregate estima-
tion attacks, UNBIASED-EST [9] and STRATIFIED-EST [26], in
this paper. UNBIASED-EST is parameter-free (besides the above-
described query pool). STRATIFIED-ESTIMATOR has two pa-
rameters for estimating COUNT(*): the number of strata and the
number of pilot queries (per stratum). We conducted experiments
with default settings specified in [26]. In particular, we set the num-
ber of strata to 10, with the same strata design as that specified
in [26]. Also according to [26], we set the number of pilot queries
to 5 per stratum.

Aggregate Suppression Algorithms: We tested both AS-SIMPLE
and AS-ARBI proposed in this paper. AS-SIMPLE has only one

parameter: the obfuscation factor γ. For most experiments, we set
γ to its default value of 2. Nonetheless, we also tested cases where
γ = 5 and 10. AS-ARBI has two additional parameters, the cover
size m and the cover ratio σ. We set m = 5 and σ = 100% as
the default value. Note that we set σ to the most “conservative”
value because we found through experiments that such a setting
already addresses the correlated-query based attack and enables a
high utility (specifically, recall). We also tested with values of m
varying from 1 to 10, and found it bears little difference on the
performance of AS-ARBI in terms of aggregate suppression, recall,
precision and processing overhead.

6.2 Result Evaluation
Aggregate Suppression by AS-ARBI: We started by testing the
effectiveness of AS-ARBI on suppressing aggregates, in particular
COUNT(*) over the document size. To do so, we ran UNBIASED-
EST over four corpora S, 1.33S, 1.67S and 2S with 47,722, 57,855,
70,829, and 72,310 documents12, respectively, which can be re-
called by the adversarial query pool. One can see from Figure 4
that, before AS-ARBI is applied, an adversary can easily distin-
guish between the four corpora based on the estimations generated
by UNBIASED-EST. Figure 5 depicts the estimations produced by
UNBIASED-EST after AS-ARBI is applied. One can see that an
adversary can no longer distinguish between the four corpora based
on the estimations - demonstrating the effectiveness of AS-ARBI
on thwarting the UNBIASED-EST aggregate estimation attack.

Utility for AS-ARBI: We then tested how well AS-ARBI pre-
serves the utility of search engine for bona fide search users, using
the AOL query pool described in Section 6.1. Figure 6 depicts the
recall and precision while Figure 7 shows the rank distance [20] af-
ter AS-ARBI is applied. One can see that the search utility is well
preserved by AS-ARBI - with recall above 80%, precision above

12Note that they do not exactly follow the 1:1.33:1.67:2 ratio be-
cause they yield different recalls over the adversarial query pool.
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Figure 12: UNBIASED-
EST&AS-ARBI(k=50): # docs
vs # queries
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Figure 13: AS-ARBI(k=50): re-
call&precision vs # queries
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Figure 14: UNBIASED-
EST&AS-ARBI: length of total
sports pages vs # queries
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Figure 15: # time ratio vs #
queries
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Figure 16: UNBIASED-
EST&AS-SIMPLE: # docs vs #
queries
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Figure 17: AS-SIMPLE: re-
call&precision vs # queries
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Figure 18: # count ratio vs #
correlated queries
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Figure 19: # count ratio vs #
correlated queries

90%, and average rank distance below 0.5, under almost all set-
tings being tested.

Various Amplification Factor γ: Next, we tested AS-ARBI with
varying amplification factor. Three corpora are used: Corpus T
(10,000 documents, adversary recall 85.11%), 5T (50,000 docu-
ments, adversary recall 67.10%), and 10T (100,000 documents,
adversary recall 57.97%). Figures 8 and 9 depict the estimation
results of UNBIASED-EST with and without AS-ARBI when the
amplification factor is 5 and 10, respectively. One can see from
both figures that AS-ARBI successfully suppressed COUNT(*) with
the larger amplification factors. One may notice that though corpus
10T is ten times larger than corpus T , estimation of UNBIASED-
EST for COUNT(*) on 10T is not that large. The reason is that
recall of the adversarial query pool on corpus 10T is much smaller
than that on corpus T , as we mentioned above. AS-ARBI is not
affected by the decrease of recall because it has no knowledge of
the adversarial query pool.

Figure 10 depicts the recall and precision for corpus T and 10T
after AS-ARBI is applied with an amplification factor γ = 10.
We also tested the utility of T and 5T when γ = 5, and found
similar results. One can make two observations from the figure:
(1) compared with the case with a smaller amplification factor γ =
2, here the recall and precision decreases slightly, indicating the
tradeoff between aggregate suppression and utility preservation. (2)
despite of the slight decrease, utility is still well preserved, with
recall above 75% and precision above 80% for all tested settings.

Aggregate Suppression Against STRATIFIED-EST: We tested
AS-ARBI against STRATIFIED-EST, the other existing aggregate
estimation attack. One can see from Figure 11 that AS-ARBI ef-
fectively prevents STRATIFIED-EST from accurately estimating
COUNT(*). Note that the utility results (over AOL query log) re-
mains the same as Figures 6 and 7, because AS-ARBI is not aware
of, and does not change with, the attacking algorithm.

Larger k: Figures 12 and 13 depict the effectiveness of AS-ARBI

on suppressing COUNT(*) and preserving utility when k = 50 re-
spectively. Note that with the larger k, the adversarial recall now
becomes 88.47% for S and 80.47% for 2S. One can see from Fig-
ure 12 that AS-ARBI remains effective on thwarting UNBIASED-
EST with the presence of a larger k. On the other hand, Figure 13
shows that while the recall and precision inevitably drops for a
larger k, the utility remains well preserved for bona fide search
users, with recall above 70% and precision above 90% for almost
all tested settings.

Suppression of SUM Aggregates: We also tested the effective-
ness of AS-ARBI on suppressing other types of aggregates (other
than COUNT(*)). In particular, we tested a SUM query which is
the total length of all documents in the corpus which contain word
“sports”. Figure 14 depicts the results for aggregate suppression
(note that utility remains unchanged as the COUNT(*) case). One
can observe from the figure the effectiveness of AS-ARBI on sup-
pressing access to SUM aggregates.

Efficiency of AS-ARBI: We tested the extra overhead incurred by
AS-ARBI on query processing, and compared it with the original
overhead of the search engine. Figure 15 depicts the results. One
can make two observations from the figure. First, the response time
sees minimum increase with the deployment of AS-ARBI. Second,
the extra ratio of overhead incurred by AS-ARBI hardly changes
when more queries have been processed by the search engine, in-
dicating the scalability of AS-ARBI to a larger number of historic
queries.

Evaluation of AS-SIMPLE: We also tested our basic algorithm
AS-SIMPLE, with Figures 16 and 17 depicting the its effectiveness
on aggregate suppression and utility, respectively. One can see that
while AS-SIMPLE successfully thwarts COUNT(*) estimation by
UNBIASED-EST, the utility it achieves is substantially lower than
that of AS-ARBI, indicating the effectiveness of virtual query pro-
cessing on improving the utility of search engine.
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Problem of AS-SIMPLE: Finally, we verified the possibility of
correlated-query based attack against AS-SIMPLE using two very
small corpora: corpus P (1000 documents, adversarial recall 97.72%)
and corpus 2P (2000 documents, adversarial recall 93.72%), when
k = 50. Based on the same set of documents from which we con-
structed the regular adversarial query pool, we identified queries
strongly correlated with query “sports” to form the pool of corre-
lated queries. Figures 18 and 19 show the change of query COUNT
when we issue 94 queries in order over P and 2P , respectively.
One can see from the figures that, when AS-SIMPLE is applied, an
adversary can easily observe the decrease of query COUNT over
P and thereby distinguish between P and 2P . AS-ARBI, on the
other hand, effectively suppresses such a distinction.

7. RELATED WORK
Aggregate Estimation for Search Engine: Several papers have
been published in the area of search engine aggregate estimation.
[11] presented an method to measure search engine coverage via
random queries through public query interface. [9] significantly im-
proved the quality of search engine aggregate estimation by using
‘importance sampling’. [26] introduced ‘stratified sampling’ and
a new document cardinality estimator, with which, efficiency of
search engine aggregate estimation was greatly improved. [10] pre-
sented a new aggregate metric ‘impressionrank’, which imposed
different weights to different web pages based on impressions given
to search engine users - and thereby made estimations more mean-
ingful from a normal user’s perspective.

Privacy Protection in Data Mining: A lot of privacy protection
research in data mining focused on protecting individual tuples,
which is a complimentary to our work in this paper. Generally,
these techniques could be classified as query auditing and value
perturbation. [19, 22] are good references to query auditing and
[5, 6, 13, 21, 24] are good references to value perturbation. Some
research papers discussed aggregate protection, in which [7,14,25]
presented the problem of protecting sensitive association rules in
frequent pattern. [12] discussed the necessity of protecting aggre-
gate information for hidden database and an algorithm based on
dummy tuple insertion.

8. CONCLUSIONS
In this paper, we initiated a discussion on the problem of enter-

prise search engine aggregate suppression. We first presented algo-
rithm AS-SIMPLE, which can effectively suppress search engine
aggregates for all current estimators. Then we observed adversaries
may launch attacking for AS-SIMPLE based on correlated queries.
Based on this observation, we proposed AS-ARBI module, with
which we can not only conquer correlated queries, but also im-
prove utility. Comprehensive experiments have been conducted to
illustrate the effectiveness our algorithms.

Our discussion is preliminary and multiple possible extensions
exist. In this paper, we focused on dynamically hiding edges be-
tween documents and queries. Other possible methods could in-
volve query auditing and dummy document insertion. Our algo-
rithms may also be modified or extended to suppress aggregates
over other online data sources - e.g., aggregate suppression over
structured hidden web databases, online social networks, etc.
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