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Abstract

This paper addresses the important tradeoff between privacy and learnability,
when designing algorithms for learning from private databases. We focus on
privacy-preserving logistic regression. First we apply an idea of Dwork et al. [6]
to design a privacy-preserving logistic regression algorithm. This involves bound-
ing the sensitivity of regularized logistic regression, and perturbing the learned
classifier with noise proportional to the sensitivity.
We then provide a privacy-preserving regularized logistic regression algorithm
based on a new privacy-preserving technique: solving a perturbed optimization
problem. We prove that our algorithm preserves privacy in the model due to [6].
We provide learning guarantees for both algorithms, which are tighter for our new
algorithm, in cases in which one would typically apply logistic regression. Ex-
periments demonstrate improved learning performance of our method, versus the
sensitivity method. Our privacy-preserving technique does not depend on the sen-
sitivity of the function, and extends easily to a class of convex loss functions. Our
work also reveals an interesting connection between regularization and privacy.

1 Introduction

Privacy-preserving machine learning is an emerging problem, due in part to the increased reliance on
the internet for day-to-day tasks such as banking, shopping, and social networking. Moreover, pri-
vate data such as medical and financial records are increasingly being digitized, stored, and managed
by independent companies. In the literature on cryptography and information security, data privacy
definitions have been proposed, however designing machine learning algorithms that adhere to them
has not been well-explored. On the other hand, data-mining algorithms have been introduced that
aim to respect other notions of privacy that may be less formally justified.

Our goal is to bridge the gap between approaches in the cryptography and information security com-
munity, and those in the data-mining community. This is necessary, as there is a tradeoff between
the privacy of a protocol, and the learnability of functions that respect the protocol. In addition to
the specific contributions of our paper, we hope to encourage the machine learning community to
embrace the goals of privacy-preserving machine learning, as it is still a fledgling endeavor.

In this work, we provide algorithms for learning in a privacy model introduced by Dwork et al. [6].
The ε-differential privacy model limits how much information an adversary can gain about a par-
ticular private value, by observing a function learned from a database containing that value, even if
she knows every other value in the database. An initial positive result [6] in this setting depends on
the sensitivity of the function to be learned, which is the maximum amount the function value can
change due to an arbitrary change in one input. Using this method requires bounding the sensitivity
of the function class to be learned, and then adding noise proportional to the sensitivity. This might
be difficult for some functions that are important for machine learning.

∗The majority of this work was done while at UC San Diego.
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The contributions of this paper are as follows. First we apply the sensitivity-based method of design-
ing privacy-preserving algorithms [6] to a specific machine learning algorithm, logistic regression.
Then we present a second privacy-preserving logistic regression algorithm. The second algorithm is
based on solving a perturbed objective function, and does not depend on the sensitivity. We prove
that the new method is private in the ε-differential privacy model. We provide learning performance
guarantees for both algorithms, which are tighter for our new algorithm, in cases in which one would
typically apply logistic regression. Finally, we provide experiments demonstrating superior learning
performance of our new method, with respect to the algorithm based on [6]. Our technique may have
broader applications, and we show that it can be applied to certain classes of optimization problems.

1.1 Overview and related work

At the first glance, it may seem that anonymizing a data-set – namely, stripping it of identifying
information about individuals, such as names, addresses, etc – is sufficient to preserve privacy.
However, this is problematic, because an adversary may have some auxiliary information, which
may even be publicly available, and which can be used to breach privacy. For more details on such
attacks, see [12].

To formally address this issue, we need a definition of privacy which works in the presence of
auxiliary knowledge by the adversary. The definition we use is due to Dwork et al. [6], and has been
used in several applications [4, 11, 2]. We explain this definition and privacy model in more detail
in Section 2.

Privacy and learning. The work most related to ours is [8] and [3]. [8] shows how to find classifiers
that preserve ε-differential privacy; however, their algorithm takes time exponential in d for inputs
in Rd. [3] provides a general method for publishing data-sets while preserving ε-differential privacy
such that the answers to all queries of a certain type with low VC-dimension are approximately
correct. However, their algorithm can also be computationally inefficient.

Additional related work. There has been a substantial amount of work on privacy in the literature,
spanning several communities. Much work on privacy has been done in the data-mining community
[1, 7], [14, 10], however the privacy definitions used in these papers are different, and some are sus-
ceptible to attacks when the adversary has some prior information. In contrast, the privacy definition
we use avoids these attacks, and is very strong.

2 Sensitivity and the ε-differential privacy model

Before we define the privacy model that we study, we will note a few preliminary points. Both in
that model, and for our algorithm and analyses, we assume that each value in the database is a real
vector with norm at most one. That is, a database contains values x1, . . . , xn, where xi ∈ Rd,
and ‖xi‖ ≤ 1 for all i ∈ {1, . . . , n}. This assumption is used in the privacy model. In addition,
we assume that when learning linear separators, the best separator passes through the origin. Note
that this is not an assumption that the data is separable, but instead an assumption that a vector’s
classification is based on its angle, regardless of its norm.

In both privacy-preserving logistic regression algorithms that we state, the output is a parameter
vector, w, which makes prediction SGN(w · x), on a point x. For a vector x, we use ||x|| to denote
its Euclidean norm. For a function G(x) defined on Rd, we use∇G to denote its gradient and∇2G
to denote its Hessian.

Privacy Definition. The privacy definition we use is due to Dwork et al. [6, 5]. In this model, users
have access to private data about individuals through a sanitization mechanism, usually denoted by
M . The interaction between the sanitization mechanism and an adversary is modelled as a sequence
of queries, made by the adversary, and responses, made by the sanitizer. The sanitizer, which is
typically a randomized algorithm, is said to preserve ε-differential privacy, if the private value of
any one individual in the data set does not affect the likelihood of a specific answer by the sanitizer
by more than ε.

More formally, ε-differential privacy can be defined as follows.
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Definition 1 A randomized mechanism M provides ε-differential privacy, if, for all databases D1

and D2 which differ by at most one element, and for any t,

Pr[M(D1) = t]
Pr[M(D2) = t]

≤ eε

It was shown in [6] that if a mechanism satisfies ε-differential privacy, then an adversary who knows
the private value of all the individuals in the data-set, except for one single individual, cannot figure
out the private value of the unknown individual, with sufficient confidence, from the responses of
the sanitizer. ε-differential privacy is therefore a very strong notion of privacy.

[6] also provides a general method for computing an approximation to any function f while preserv-
ing ε-differential privacy. Before we can describe their method, we need a definition.

Definition 2 For any function f with n inputs, we define the sensitivity S(f) as the maximum, over
all inputs, of the difference in the value of f when one input of f is changed. That is,

S(f) = max
(a,a′)

|f(x1, . . . , xn−1, xn = a)− f(x1, . . . , xn−1, xn = a′)|

[6] shows that for any input x1, . . . , xn, releasing f(x1, . . . , xn) + η, where η is a random variable
drawn from a Laplace distribution with mean 0 and standard deviation S(f)

ε preserves ε-differential
privacy.

In [13], Nissim et al. showed that given any input x to a function, and a function f , it is sufficient
to draw η from a Laplace distribution with standard deviation SS(f)

ε , where SS(f) is the smoothed-
sensitivity of f around x. Although this method sometimes requires adding a smaller amount of
noise to preserve privacy, in general, smoothed sensitivity of a function can be hard to compute.

3 A Simple Algorithm

Based on [6], one can come up with a simple algorithm for privacy-preserving logistic regression,
which adds noise to the classifier obtained by logistic regression, proportional to its sensitivity. From
Corollary 2, the sensitivity of logistic regression is at most 2

nλ . This leads to Algorithm 1, which
obeys the privacy guarantees in Theorem 1.

Algorithm 1:
1. Compute w∗, the classifier obtained by regularized logistic regression on the labelled ex-

amples (x1, y1), . . . , (xn, yn).

2. Pick a noise vector η according to the following density function: h(η) ∝ e−
nελ
2 ||η||.

To pick such a vector, we choose the norm of η from the Γ(d, 2
nελ ) distribution, and the

direction of η uniformly at random.

3. Output w∗ + η.

Theorem 1 Let (x1, y1), . . . , (xn, yn) be a set of labelled points over Rd such that ||xi|| ≤ 1 for
all i. Then, Algorithm 1 preserves ε-differential privacy.

PROOF: The proof follows by a combination of [6], and Corollary 2, which states that the sensitivity
of logistic regression is at most 2

nλ . �

Lemma 1 Let G(w) and g(w) be two convex functions, which are continuous and differentiable at
all points. If w1 = argminwG(w) and w2 = argminwG(w) + g(w), then, ||w1 − w2|| ≤ g1

G2
. Here,

g1 = maxw ||∇g(w)|| and G2 = minv minw vT∇2G(w)v, for any unit vector v.

The main idea of the proof is to examine the gradient and the Hessian of the functions G and g
around w1 and w2. Due to lack of space, the full proof appears in the appendix.

Corollary 2 Given a set of n examples x1, . . . , xn in Rd, with labels y1, . . . , yn, such that for all i,
||xi|| ≤ 1, the sensitivity of logistic regression with regularization parameter λ is at most 2

nλ .
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PROOF: We use a triangle inequality and the fact that G2 ≥ λ and g1 ≤ 1
n . �

Learning Performance. In order to assess the performance of Algorithm 1, we first try to bound
the performance of Algorithm 1 on the training data. To do this, we need to define some notation.

For a classifier w, we use L(w) to denote the expected loss of w over the data distribution, and
L̂(w) to denote the empirical average loss of w over the training data. In other words, L̂(w) =
1
n

∑n
i=1 log(1 + e−yiw

T xi), where, (xi, yi), i = 1, . . . , n are the training examples.

Further, for a classifier w, we use the notation fλ(w) to denote the quantity 1
2λ||w||

2 + L(w) and
f̂λ(w) to denote the quantity 1

2λ||w||
2 + L̂(w). Our guarantees on this algorithm can be summarized

by the following lemma.

Lemma 3 Given a logistic regression problem with regularization parameter λ, letw1 be the classi-
fier that minimizes f̂λ, and w2 be the classifier output by Algorithm 1 respectively. Then, with prob-
ability 1− δ over the randomness in the privacy mechanism, f̂λ(w2) ≤ f̂λ(w1) + 2d2(1+λ) log2(d/δ)

λ2n2ε2 .

Due to lack of space, the proof is deferred to the appendix.

From Lemma 3, we see that performance of Algorithm 1 degrades with decreasing λ, and is poor in
particular when λ is very small. One question is, can we get a privacy-preserving approximation to
logistic regression, which has better performance bounds for small λ? To explore this, in the next
section, we look at a different algorithm.

4 A New Algorithm

In this section, we provide a new privacy-preserving algorithm for logistic regression. The input to
our algorithm is a set of examples x1, . . . , xn over Rd such that ||xi|| ≤ 1 for all i, a set of labels
y1, . . . , yn for the examples, a regularization constant λ and a privacy parameter ε, and the output is
a vector w∗ in Rd. Our algorithm works as follows.

Algorithm 2:

1. We pick a random vector b from the density function h(b) ∝ e−
ε
2 ||b||. To implement this,

we pick the norm of b from the Γ(d, 2
ε ) distribution, and the direction of b uniformly at

random.
2. Given examples x1, . . . , xn, with labels y1, . . . , yn and a regularization constant λ, we

compute w∗ = argminw
1
2λw

Tw + bTw
n + 1

n

∑n
i=1 log(1 + e−yiw

T xi). Output w∗.

We observe that our method solves a convex programming problem very similar to the logistic
regression convex program, and therefore it has running time similar to that of logistic regression.
In the sequel, we show that the output of Algorithm 2 is privacy preserving.

Theorem 2 Given a set of n examples x1, . . . , xn over Rd, with labels y1, . . . , yn, where for each
i, ||xi|| ≤ 1, the output of Algorithm 2 preserves ε-differential privacy.

PROOF: Let a and a′ be any two vectors over Rd with norm at most 1, and y, y′ ∈
{−1, 1}. For any such (a, y), (a′, y′), consider the inputs (x1, y1), . . . , (xn−1, yn−1), (a, y) and
(x1, y1) . . . , (xn−1, yn−1), (a′, y′). Then, for any w∗ output by our algorithm, there is a unique
value of b that maps the input to the output. This uniqueness holds, because both the regularization
function and the loss functions are differentiable everywhere.

Let the values of b for the first and second cases respectively, be b1 and b2.

Since w∗ is the value that minimizes both the optimization problems, the derivative of both opti-
mization functions at w∗ is 0.

This implies that for every b1 in the first case, there exists a b2 in the second case such that: b1 −
ya

1+eyw∗T a
= b2 − y′a′

1+ey′w∗T a′
. Since ||a|| ≤ 1, ||a′|| ≤ 1, and 1

1+eyw∗T a
≤ 1, and 1

1+ey′w∗T a′
≤ 1
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for any w∗, ||b1 − b2|| ≤ 2. Using the triangle inequality, ||b1|| − 2 ≤ ||b2|| ≤ ||b1||+ 2. Therefore,
for any pair (a, y), (a′, y′),

Pr[w∗|x1, . . . , xn−1, y1, . . . , yn−1, xn = a, yn = y]
Pr[w∗|x1, . . . , xn−1, y1, . . . , yn−1, xn = a′, yn = y′]

=
h(b1)
h(b2)

= e−
ε
2 (||b1||−||b2||)

where h(bi) for i = 1, 2 is the density of bi. Since −2 ≤ ||b1|| − ||b2|| ≤ 2, this ratio is at most eε.
theorem follows. �

We notice that the privacy guarantee for our algorithm does not depend on λ; in other words, for any
value of λ, our algorithm is private. On the other hand, as we show in Section 5, the performance of
our algorithm does degrade with decreasing λ in the worst case, although the degradation is better
than that of Algorithm 1 for λ < 1.

Other Applications. Our algorithm for privacy-preserving logistic regression can be generalized to
provide privacy-preserving outputs for more general convex optimization problems, so long as the
problems satisfy certain conditions. These conditions can be formalized in the theorem below.

Theorem 3 Let X = {x1, . . . , xn} be a database containing private data of individuals. Suppose
we would like to compute a vector w that minimizes the function F (w) = G(w) +

∑n
i=1 l(w, xi),

over w ∈ Rd for some d, such that all of the following hold:

1. G(w) and l(w, xi) are differentiable everywhere, and have continuous derivatives

2. G(w) is strongly convex and l(w, xi) are convex for all i

3. ||∇wl(w, x)|| ≤ κ, for any x.

Let b = B · b̂, where B is drawn from Γ(d, 2κ
ε ), and b̂ is drawn uniformly from the surface of a d-

dimensional unit sphere. Then, computing w∗, where w∗ = argminwG(w) +
∑n
i=1 l(w, xi) + bTw,

provides ε-differential privacy.

5 Learning Guarantees

In this section, we show theoretical bounds on the number of samples required by the algorithms to
learn a linear classifier. For the rest of the section, we use the same notation used in Section 3.

First we show that, for Algorithm 2, the values of f̂λ(w2) and f̂λ(w1) are close.

Lemma 4 Given a logistic regression problem with regularization parameter λ, let w1 be the clas-
sifier that minimizes f̂λ, and w2 be the classifier output by Algorithm 2 respectively. Then, with
probability 1− δ over the randomness in the privacy mechanism, f̂λ(w2) ≤ f̂λ(w1) + 8d2 log2(d/δ)

λn2ε2 .

The proof is in the appendix. As desired, for λ < 1, we have attained a tighter bound using Algo-
rithm 2, than Lemma 3 for Algorithm 1.

Now we give a performance guarantee for Algorithm 2.

Theorem 4 Let w0 be a classifier with expected loss L over the data distribution. If the training ex-
amples are drawn independently from the data distribution, and if n > C max( ||w0||2

ε2g
,
d log( dδ )||w0||

εgε
),

for some constant C, then, with probability 1 − δ, the classifier output by Algorithm 2 has loss at
most L+ εg over the data distribution.

PROOF: Let w∗ be the classifier that minimizes fλ(w) over the data distribution, and let w1 and w2

be the classifiers that minimize f̂λ(w) and f̂λ(w) + bTw
n over the data distribution respectively. We

can use an analysis as in [15] to write that:

L(w2) = L(w0) + (fλ(w2)− fλ(w∗)) + (fλ(w∗)− fλ(w0)) +
λ

2
||w0||2 −

λ

2
||w2||2 (1)
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Notice that from Lemma 4, f̂λ(w2) − f̂λ(w1) ≤ 8d2 log2(d/δ)
λn2ε2 . Using this and [16], we can bound

the second quantity in equation 1 as fλ(w2) − fλ(w∗) ≤ 16d2 log2(d/δ)
λn2ε2 + O( 1

λn ). By definition of
w∗, the third quantity in Equation 1 is non-positive. If λ is set to be εg

||w0||2 , then, the fourth quantity

in Equation 1 is at most εg2 . Now, if n > C · ||w0||2
ε2g

for a suitable constant C, 1
λn ≤

εg
4 . In addition,

if n > C · ||w0||d log( dδ )

εεg
, then, 16d2 log2( dδ )

λn2ε2 ≤ εg
4 . In either case, the total loss of the classifier w2

output by Algorithm 2 is at most L(w0) + εg .

�

The same technique can be used to analyze the sensitivity-based algorithm, using Lemma 3, which
yields the following.

Theorem 5 Let w0 be a classifier with expected loss L over the data distribution. If
the training examples are drawn independently from the data distribution, and if n >

C max( ||w0||2
ε2g

,
d log( dδ )||w0||

εgε
,
d log( dδ )||w0||2

ε
3/2
g ε

), for some constant C, then, with probability 1 − δ, the

classifier output by Algorithm 2 has loss at most L+ εg over the data distribution.

It is clear that this bound is never lower than the bound for Algorithm 2. Note that for problems in
which (non-private) logistic regression performs well, ‖w0‖ ≥ 1 if w0 has low loss, since otherwise
one can show that the loss of w0 would be lower bounded by log(1 + 1

e ). Thus the performance
guarantee for Algorithm 2 is significantly stronger than for Algorithm 1, for problems in which one
would typically apply logistic regression.

6 Results in Simulation

Uniform, margin=0.03 Unseparable (uniform with noise 0.2 in margin 0.1)
Sensitivity method 0.2962±0.0617 0.3257±0.0536

New method 0.1426±0.1284 0.1903±0.1105

Standard LR 0±0.0016 0.0530±0.1105

Figure 1: Test error: mean ± standard deviation over five folds. N=17,500.

We include some simulations that compare the two privacy-preserving methods, and demonstrate
that using our privacy-preserving approach to logistic regression does not degrade learning per-
formance terribly, from that of standard logistic regression. Performance degradation is inevitable
however, as in both cases, in order to address privacy concerns, we are adding noise, either to the
learned classifier, or to the objective.

In order to obtain a clean comparison between the various logistic regression variants, we first ex-
perimented with artificial data that is separable through the origin. Because the classification of a
vector by a linear separator through the origin depends only its angle, not its norm, we sampled the
data from the unit hypersphere. We used a uniform distribution on the hypersphere in 10 dimensions
with zero mass within a small margin (0.03) from the generating linear separator. Then we experi-
mented on uniform data that is not linearly separable. We sampled data from the surface of the unit
ball in 10 dimensions, and labeled it with a classifier through the origin. In the band of margin≤ 0.1
with respect to the perfect classifier, we performed random label flipping with probability 0.2. For
our experiments, we used convex optimization software provided by [9].

Figure 1 gives mean and standard deviation of test error over five-fold cross-validation, on 17,500
points. In both simulations, our new method is superior to the sensitivity method, although incurs
more error than standard (non-private) logistic regression. For both problems, we tuned the logistic
regression parameter, λ, to minimize the test error of standard logistic regression, using five-fold
cross-validation on a holdout set of 10,000 points (the tuned values are: λ = 0.01 in both cases).
For each test error computation, the performance of each of the privacy-preserving algorithms was
evaluated by averaging over 200 random restarts, since they are both randomized algorithms.

In Figure 2a)-b) we provide learning curves. We graph the test error after each increment of 1000
points, averaged over five-fold cross validation. The learning curves reveal that, not only does the
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Figure 2: Learning curves: a) Uniform distribution, margin=0.03, b) Unseparable data.
Epsilon curves: c) Uniform distribution, margin=0.03, d) Unseparable data.

new method reach a lower final error than the sensitivity method, but it also has better performance
at most smaller training set sizes.

In order to observe the effect of the level of privacy on the learning performance of the privacy-
preserving learning algorithms, in Figure 2c)-d) we vary ε, the privacy parameter to the two algo-
rithms, on both the uniform, low margin data, and the unseparable data. As per the definition of
ε-differential privacy in Section 2, strengthening the privacy guarantee corresponds to reducing ε.
Both algorithms’ learning performance degrades in this direction. For the majority of values of ε
that we tested, the new method is superior in managing the tradeoff between privacy and learning
performance. For very small ε, corresponding to extremely stringent privacy requirements, the sen-
sitivity method performs better but also has a predication accuracy close to chance, which is not
useful for machine learning purposes.

7 Conclusion

In conclusion, we show two ways to construct a privacy-preserving linear classifier through logistic
regression. The first one uses the methods of [6], and the second one is a new algorithm. Us-
ing the ε-differential privacy definition of Dwork et al. [6], we prove that our new algorithm is
privacy-preserving. We provide learning performance guarantees for the two algorithms, which are
tighter for our new algorithm, in cases in which one would typically apply logistic regression. In
simulations, our new algorithm outperforms the method based on [6].

Our work reveals an interesting connection between regularization and privacy: the larger the reg-
ularization constant, the less sensitive the logistic regression function is to any one individual ex-
ample, and as a result, the less noise one needs to add to make it privacy-preserving. Therefore,
regularization not only prevents overfitting, but also helps with privacy, by making the classifier less
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sensitive. An interesting future direction would be to explore whether other methods that prevent
overfitting also have such properties.

Other future directions would be to apply our techniques to other commonly used machine-learning
algorithms, and to explore whether our techniques can be applied to more general optimization
problems. Theorem 3 shows that our method can be applied to a class of optimization problems
with certain restrictions. An open question would be to remove some of these restrictions.

Acknowledgements. We thank Sanjoy Dasgupta and Daniel Hsu for several pointers.

References
[1] R. Agrawal and R. Srikant. Privacy-preserving data mining. SIGMOD Rec., 29(2):439–450, 2000.

[2] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy, and consis-
tency too: a holistic solution to contingency table release. In PODS, pages 273–282, 2007.

[3] A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database privacy. In R. E.
Ladner and C. Dwork, editors, STOC, pages 609–618. ACM, 2008.

[4] K. Chaudhuri and N. Mishra. When random sampling preserves privacy. In C. Dwork, editor, CRYPTO,
volume 4117 of Lecture Notes in Computer Science, pages 198–213. Springer, 2006.

[5] C. Dwork. Differential privacy. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors, ICALP
(2), volume 4052 of Lecture Notes in Computer Science, pages 1–12. Springer, 2006.

[6] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis.
In Theory of Cryptography Conference, pages 265–284, 2006.

[7] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving data mining.
In PODS, pages 211–222, 2003.

[8] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What can we learn
privately? In Proc. of Foundations of Computer Science, 2008.

[9] C. T. Kelley. Iterative Methods for Optimization. SIAM, 1999.

[10] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. l-diversity: Privacy beyond k-
anonymity. In ICDE, page 24, 2006.

[11] F. McSherry and K. Talwar. Mechanism design via differential privacy. In FOCS, pages 94–103, 2007.

[12] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets. In IEEE Symposium
on Security and Privacy, pages 111–125. IEEE Computer Society, 2008.

[13] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis. In
D. S. Johnson and U. Feige, editors, STOC, pages 75–84. ACM, 2007.

[14] P. Samarati and L. Sweeney. Protecting privacy when disclosing information: k-anonymity and its en-
forcement through generalization and suppression. In Proc. of the IEEE Symposium on Research in
Security and Privacy, 1998.

[15] S. Shalev-Shwartz and N. Srebro. Svm optimization: Inverse dependence on training set size. In Interna-
tional Conference on Machine Learning(ICML), 2008.

[16] K. Sridharan, N. Srebro, and S. Shalev-Schwartz. Fast rates for regularized objectives. In Neural Infor-
mation Processing Systems, 2008.

Appendix

In this section, we present some of the proofs in more detail.

PROOF: (Of Theorem 1) The proof essentially follows from [6] and Lemma 1. From Lemma 1, the
sensivity of logistic regression with regularization parameter λ is at most 2

nλ . We observe that when
we pick ||η|| from the distribution in Algorithm 1, for a specific vector η0 ∈ Rd, the density at η0 is
proportional to e−

nλε
2 ||η0||. Let A1 denote the output of Algorithm 1. For any w, and any a and a′,

y, y′,

Pr[A1 = w|(x1, y1), . . . , (xn−1, yn−1), (a, y)]
Pr[A1 = w|(x1, y1), . . . , (xn−1, yn−1), (a′, y′)]

=
h(η1)
h(η2)

= e−
nλε
2 (||η1||−||η2||)
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where η1 and η2 are the noise vectors picked in Step 2 of Algorithm 1, and h is the den-
sity function from which η is picked. If w1 and w2 are the solutions respectively to non-
private regularized logistic regression when the input is (x1, y1), . . . , (xn−1, yn−1), (a, y) and
(x1, y1), . . . , (xn−1, yn−1), (a′, y′), then, η2 − η1 = w2 − w1. From Lemma 1, ||η1 − η2|| =
||w2 − w1|| ≤ 2

nλ . Moreover, by symmetry, the density of the direction of η1 − η2 is uniform.
Therefore, by construction, h(b1)h(b2)

≤ eε. The theorem follows. �

PROOF: (Of Lemma 1) Using the definition of w1 and w2, and the fact that G and g are continuous
and differentiable everywhere,

∇G(w1) = ∇G(w2) +∇g(w2) = 0 (2)

Let v1, . . . , vd be a basis of Rd. For each j, we consider in order the functions 〈∇(G+ g)(w), vj〉,
where w = w1 + t(w2−w1), for a parameter t. We can do a Taylor series expansion of this function
of one variable as follows:

〈∇(G+ g)(w2), vj〉 = 〈∇(G+ g)(w1), vj〉+ 〈w2 − w1, vj〉vTj ∇2(G+ g)(w∗)vj

wherew∗ = w1+t∗(w2−w1) for some 0 ≤ t∗ ≤ 1. Since g is convex, vTj (∇2(G+g)(w∗))vj ≥ G2.

Using this, and Equation 2, we get that for any j, 〈w2 − w1, vj〉 ≤ | 〈∇g(w1),vj〉
G2

|. Squaring and

summing over all j, ||w2 − w1||2 =
∑
j〈w2 − w1, vj〉2 ≤ g21

G2
2

, from which the lemma follows.

�

PROOF:(Of Theorem 3) The proof is very similar to the proof of Theorem 2. Condition (2) guaran-
tees that both F (w) and F (w) + bTw have a unique global minima, and condition (1) guarantees
that the minimum occurs when the gradient of F (w) + bTw is 0. The rest of the proof is similar to
the proof of Theorem 2. �

PROOF:(Of Lemma 4) Consider a set of training examples x1, . . . , xn, with labels y1, . . . , yn, such
that ||xi|| ≤ 1 for all i. Then, as w2 minimizes the optimization function f̂λ(w) + 1

nb
Tw,

f̂λ(w2) ≤ f̂λ(w1) +
1
n
bT (w1 − w2)

From Lemma 1, ||w1−w2|| ≤ 2||b||
nλ . Therefore, the loss can be upper-bounded by 2||b||2

n2λ . Since ||b||
is drawn from a Γ(d, 2

ε ) distribution, from Lemma 5, with probability 1− δ, ||b|| ≤ 2d log(d/δ)
ε . The

Lemma follows by plugging this in to the previous equation. �

PROOF:(Of Lemma 3) Consider a set of training examples x1, . . . , xn, with labels y1, . . . , yn, such
that ||xi|| ≤ 1 for all i. Then, we can use a Taylor series expansion to write:

f̂λ(w2) = f̂λ(w1) +∇f̂λ(w1) · (w2 − w1) +
1
2

(w2 − w1)T∇2f̂λ(w∗)(w2 − w1)

for some w∗ ∈ Rd. From the definition of w1, ∇f̂λ(w1) = 0. In addition, from Lemma 5, with

probability 1− δ, ||w2 − w1|| ≤
2d log( dδ )

λnε . Therefore,

f̂λ(w2)− f̂λ(w1) ≤
2d2 log2(dδ )
λ2n2ε2

· ||∇2f̂λ(w∗)||2 (3)

Here, for a matrix A, we use the notation ||A||2 to denote the L2 norm of A.

For any w∗, we can write ∇2f̂λ(w∗) as follows:

∇2f̂λ(w∗) = λId +
1
n

n∑
i=1

xi · xTi ·
e(w

∗)T xi

(1 + e(w∗)T xi)2

Since each input vector xi has norm 1, and since e(w
∗)T xi

(1+e(w
∗)T xi )2

≤ 1, the L2 norm of the second term
of this matrix can be upper bounded by 1. The lemma follows by plugging this in to Equation 3. �

Finally,we show a lemma, which shows that the norm of the randomly drawn vector b in Algorithm
2 is small with high probability.
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Lemma 5 With probability at least 1− δ, ||b|| ≤ 2d log( dδ )

ε .

PROOF: We observe that a random variable drawn from Γ(d, 2
ε ) can be written as the sum of d

independent identically distributed random variables, each of which is distributed as an exponential
random variable with mean 2

ε . Using an union bound, we see that with probability 1− δ, the values

of all d of these variables are upper bounded by 2 log( dδ )

ε . Therefore, with probability at least 1− δ,

||b|| ≤ 2d log( dδ )

ε . �
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