
 2014 HUIC Education & STEM Conference

 Honolulu, Hawaii June 16-18, 2014

What approaches work best for teaching secure

coding practices?

ABSTRACT

The same vulnerabilities continue to appear in code, over and

over again, yet many educational institutions continue to

teach programming as they always have. Some high-tech

companies have found it necessary to establish ongoing

security training for their developers to make up for the
absence of college-level, secure coding curriculum. Recently,

the thread model, which integrates security concepts into

existing Computer and Information Science curricula, has

been recognized as effective, while not impacting resource-

limited institutions with a complete curriculum change.
Using the thread approach, we developed curricula inserts

that include a programming assignment using a threat

modeling tool, a design assignment applying a secure

software development life cycle, a study comparing non-

secure with secure code, and a re-documentation technique
that produces secure code from non-secure programs. We

introduced these curriculum assets during a secure coding

workshop for instructors. Their responses to assessment

surveys provide insight into what approaches work best.

Index terms: Secure Coding, Thread Teaching Model, Secure

Coding Workshop

I. INTRODUCTION

It is estimated that 90 percent of reported security

incidents result from exploits against defects in the

design or code of commonly used software [1].

 Sam Chung, Ph.D., Associate Professor, Institute of
Technology, University of Washington Tacoma.

 Leo Hansel, MS, Institute of Technology, University of

Washington Tacoma.

 Yan Bai, Ph.D., Associate Professor, Institute of Technology,
University of Washington Tacoma

 Elizabeth Moore, Ph.D., Principle Evaluator, Applied

Inference, Seattle, Washington.

 Carol Taylor, Ph.D., Associate Professor, Eastern
Washington University, Cheney, Washington.

 Martha Crosby, Ph.D., Professor, University of Hawaii

Manoa, Honolulu, Hawaii.

 Rachelle Heller, Ph.D., Professor, George Washington

University, Washington, D.C.

 Viatcheslav Popovsky, Ph.D., Affiliate Professor, Center for

Ethics, University of Idaho, Moscow, Idaho.

 Barbara Endicott-Popovsky, Ph.D., Director for the Center

of Information Assurance and Cybersecurity, Research

Associate Professor, University of Washington, Seattle.

According to Symantec’s vulnerability trend analysis,

the total number of vulnerabilities is on the rise, from

4,814 in 2009 to 6,253 in 2010—a 30% increase [2]. By

improving the education of computer scientists to

include secure coding practices , we could expect

significant reduction in the number of software

vulnerabilities produced in code.

There have been three well-documented approaches to

teaching secure coding techniques [3, 4]: 1) the single-

course approach, 2) the track approach, and 3) the thread

approach. The single-course approach is as its name

implies—the introduction of a single course on secure

coding practices, generally at the end of an

undergraduate program. The track approach is similar.

Several additional courses , instead of just one, are added

to existing curriculum, to create a concentration that

provides a more in-depth understanding. The thread

approach, in contrast, recommends integration of

security concepts across existing Computer Science (CS)

and Information Systems (IS) curriculum.

The thread approach has been recognized as

pedagogically more effective, while at the same time not

impacting resource-limited institutions unnecessarily

with the overhead of making a complete curriculum

change [5]. Adopting a thread approach, institutions need

only a small budget to upgrade curriculum to include

secure coding concepts , and faculty members need only

to spend a small amount of time to make needed changes

[4]. There is no need to introduce completely new

courses that require a lengthy internal curriculum review

process that may slow implementation. Several

successful attempts at the thread approach have been

reported [4, 5].

In spite of reported success, many faculty members find

it too time consuming to make the needed curricular

improvements. Others are unsure about how to

incorporate secure coding concepts into existing courses.

Still others are simply unaware.

Sam Chung, Leo Hansel, Yan Bai, Univ. of Washington Tacoma, Elizabeth Moore, Applied Inference, Carol Taylor,

Eastern Washington Univ., Martha Crosby, Univ of Hawaii Manoa, Rachelle Heller, George Washington University

Viatcheslav Popovsky, Univ. of Idaho, and Barbara Endicott-Popovsky, Univ. of Washington, Seattle

 2014 HUIC Education & STEM Conference

 Honolulu, Hawaii June 16-18, 2014

For this reason, we designed a two-day secure coding

workshop for faculty. The content included: 1) a

comprehensive pedagogical model that provides a tool

for adjusting curriculum to student audience [6], 2) a

comprehensive model of information system security [7],

3) a secure software development life cycle, 4) threat

modeling, 5) a software reengineering approach to

developing secure code, and 6) example cases

demonstrating that approach. The workshop was

evaluated internally and externally, leading to

identification of potential barriers preventing faculty

from incorporating workshop material into their own

curriculum. Each workshop component was individually

assessed. Open-ended suggestions for workshop

improvement were collected from participants.

We begin with an enumeration of the workshop

components, and then summarize what we learned from

faculty attendees.

II. SECURE CODE WORKSHOP CURRICULUM

The workshop was conducted over two days. Nine

instructors from several schools participated. Each

taught programming classes at either the beginning or

intermediate levels. The workshop proceeded from

abstract concepts to hands-on exercises. Curriculum

elements, in order taught, are described subsequently:

A. Pedagogical Model

Figure 1: Pedagogical Model Underpinning Secure

Code Curriculum Development

The authors have relied on the pedagogical model in

Figure 1 for conceptualizing computer security and

information assurance curricula [6]. The model has five

elements: students, goals, content, the teacher and

didactic processes. As a system, each component is

influenced by the other. The more precisely the five

components are defined, along with the connections

among them, the more repeatable and predictable are the

learning results [6].

Workshop attendees were encouraged to view their

courses through this model, recognizing that as the

student body demographics change from class to class,

adjustments are needed in the other four elements. This

is a particularly appropriate approach for returning adults

whose backgrounds vary, cohort to cohort.

Applying the model, the following questions are asked:

1) How many elements comprise the subject? 2) At what

level will each element be taught—reproductive vs.

productive? 3) In what order should these elements be

taught? 4) How much time should be spent on each

element? and 5) how will students be tested?

B. Asset Projection Model (APM)

Figure 2: Asset Protection Model:

An Extension of the McCumber Cube

To position secure coding within information assurance,

workshop attendees were introduced to the Asset

Protection Model (APM), Figure 2, which presents a

systematic way to view the identification and protection

of computer assets from three dimensions: 1) the system,

as a set of technical components, 2) the threat spectrum

arrayed against it, and 3) the target characteristics a

secure system must have (McCumber Cube). The model

is described in depth in [6, 7].

The APM incorporates the Comprehensive Model of

Information Systems Security (CMISS), commonly

referred to as the McCumber Cube [8]. Presented in

1991, the McCumber Cube has remained useful to

security practitioners over this extended period in spite

of dramatic changes in technology due to its focus on

information, rather than technology, along with a model

structure of cognitive simplicity that allows human

 2014 HUIC Education & STEM Conference

 Honolulu, Hawaii June 16-18, 2014

beings the ability to organize and reason about

information at the proper level of abstraction.

C. Secure Development Lifecycle (SDL)

Several secure software development models were

presented at the workshop. These included the Systems

Security Engineering Capability Maturity Model (SSE-

CMM) by the Software Engineering Institute at Carnegie

Mellon University [9], the Software Assurance Maturity

Model (SAMM) developed by the Open Web

Applications security Project (OWASP) [10], and

Microsoft’s Security Development Lifecycle (SDL)

[11].

D. Threat Modeling Tool (TMT)

Threat modeling was demonstrated using Microsoft’s

Secure Development Lifecycle (SDL) Threat Modeling

Tool (TMT) [12]. By inputting a Data Flow Diagram

(DFD) into the TMT, it will indicate trust boundaries,

identify potential threats according to the STRIDE

model (Spoofing, Tampering, Repudiation, Information

disclosure, Denial of service, and Elevation of

privileges), and suggest mitigations [13]. Figure 3 shows

three trust boundaries in sample output from TMT

version 3.1.4. This free download tool works on top of

Visio.

Figure 3: Sample Output from Microsoft’s SDL TMT

E. Software Reengineering Based Secure Coding

We presented a specific software reengineering

methodology we developed, Figure 4, which efficiently

transforms nonsecure source code examples from

existing legacy assignments, into assignments resulting

in secure code [14]. It uses the re-documentation

technique 5W1H Re-Doc [15] that employs UML

diagrams to identify source code vulnerabilities, showing

where security features can be inserted. We expected that

teaching faculty participants this process would provide

them a tool for easily converting their own legacy

assignments into secure code assignments .

Figure 4: Software Reengineering Based Secure

Coding Approach

F. Example Cases

Three example cases were used to demonstrate our

software reengineering process. Video clips augmented

presentations, walking viewers through the process in

Figure 4, step-by-step, from analysis of vulnerable

source code, using UML diagrams to identify code

vulnerabilities, through forward engineering secure code

from this analysis.

The first case demonstrated buffer overflow in a C

program. The subsequent cases addressed database and

Web site vulnerabilities, respectively, covering SQL

Injection and Cross Site Scripting (XSS). These cases

were selected given frequency of occurrence.

III. CONDUCTING THE WORKSHOP

The workshop targeted computer and information science

instructors who teach beginning and intermediate

programming or web development. Materials presented

were made available to attendees in order to encourage

use in the classroom. The reverse engineering process

was described so that instructors could create their own

example cases that could be shared later among attendees.

A website was proposed for collecting and sharing these

examples with a community of secure coding instructors.

Evaluators administered surveys at the end of both days

of the workshop, in order to capture immediate feedback

on discrete components. In addition, they observed

interaction among attendees and presenters . Participant

responses were identified by codes so that they could be

linked. Responses were transcribed into a spreadsheet

and analyzed using the IBM Statistical Package for the

Social Sciences (SPSS).

IV. KEY FINDINGS

Key findings are summarized here and provided

feedback for subsequent training events.

 2014 HUIC Education & STEM Conference

 Honolulu, Hawaii June 16-18, 2014

A. Background of Participants

Nine instructors participated. They either self-selected

based on faculty announcements, or they were personally

solicited by the organizers. As a result, participants had

more than a passing interest in secure code. The

workshop was a pilot for a series of workshops to be

offered the following summer.

Attendees had worked in both industry and academia.

Industry experience ranged from 3 to 30 years—

averaging 14 years each. Instructor experience ranged

from two quarters to 25 years—also averaging 14 years

each. Six described their primary students as upper

division, graduate, or professional returning adults. Two

taught primarily first or second year undergraduate

students. Both 4-year and 2-year institutions were

represented.

B. CS /IS Couse Curricula Represented

Participants reported teaching a wide variety of

computer and information science topics, including

operating systems, networking, system design, systems

analysis, application development, computer hardware

design, software engineering, data structures, web design

and development, and compilers. Some also taught

general classes such as computer and society, or

technology and public policy.

Two taught entire courses in security, one actually taught

a course in secure development and wanted to learn

additional techniques. Six incorporated secure coding

concepts in their courses. Three covered array overrun,

SL and buffer injection, and input checking/data

validation. Three taught more complex topics .

Five observed that, as novices, students have difficulty

grasping the implications of code vulnerabilities or

inherent vulnerabilities in client-server architecture and

networking, and therefore may not be candidates for

many of the topics suggested in the workshop. In

addition, even if students understood the concepts, they

tended to ignore or underrate the importance of security

and the need to be vigilant to creating vulnerabilities in

their own code.

C. Goals for Learning Secure Coding Tools

Those who already taught some security concepts were

asked what motivated them to do so. Some had been

motivated by observing security challenges that

continually occurred in student assignments, mentioning

seeing repeated issues with memory management, input

validation, constructor/destructor concerns and array

bounds checking. Another identified being motivated by

a desire to reduce vulnerabilities in deployed code;

another wanted to influence students to adopt personal

computer security measures.

At the end of the workshop, seven indicated intent to

incorporate the workshop materials in some fashion.

They were energized and enthused about some of our

curriculum artifacts, in particular. They mentioned as

especially useful: the National Vulnerability Database

(NVD) http://nvd.nist.gov/ and Common Weakness

Enumeration (CWE) http://nvd.nist.gov/cwe.cfm, code

examples, the threat model, and the example cases.

Those inspired to teach security in the future were

motivated by a desire to provide students with a set of

secure code best practices, with one specifying wanting

students to learn to “check boundary conditions of

everything…” Other reasons given were the need for

students to understand the risks associated with

nonsecure code, the need to develop a security attitude

or culture, along with the need to raise student

awareness. One indicated that a future desirable take-

away would be a “Healthy fear of all aspects!”

Participants suggested we add topics such as: secure

code patterns; validation modules for students to insert

in code; exercises where students try to break each

other’s code; methods to check input; multiple strategies

for web security; exercises in Structured Query

Language (SQL), and a demo in networking.

While seven indicated their curriculum would change as

a result of the workshop, one said that theirs would not

and the other gave a more noncommittal response.

V. ASSESSMENT

A. Workshop Assessment

Participants were asked to rate the workshop on a number

of criteria, including how well they understood the

material, how useful or relevant they found the material

presented, how well it fulfilled their expectations, how

well it met their needs, and how much they were looking

forward to the second day’s session. Figure 5 summarizes

these results.

Seven of the participants asked for our classroom material

and one indicated a need for ongoing support in order to

implement them in their classes . As for what could be

done better, they suggested:

 More examples of code (especially Java)

 More classroom materials

 Packaged validation functions for JavaScript/ PHP

 2014 HUIC Education & STEM Conference

 Honolulu, Hawaii June 16-18, 2014

 Packaged examples of XSS & SQL injection in

JavaScript/PHP

 Resources made available on the web

 Additional, ongoing training.

B. Barriers to Implementation

Figure 6 ranks the barriers viewed as preventing them

from incorporating workshop material into their courses.

Overall, participants regard security topics as important

and appropriate for their students, but they seemed

uncertain about how to incorporate them, needing more

support in the form of resources, examples, and perhaps

more training.

Faculty overload emerged as the biggest barrier to

implementation. The three next most challenging barriers

were the need for more resources, the lack of teaching

time within the curriculum, and the lack of time to make

the needed changes.

Two participants indicated that these challenges were

great enough to prevent implementation. One thought

that the concepts were at too high a level to be useful,

along with not having enough teaching time to fit the

material in with other required topics .

The remaining potential barriers identified in the survey

received less agreement. All participants disagreed with

the statements: 1) “I don’t believe the problem is

significant enough to warrant the effort,” (two-thirds

disagreed strongly), and 2) “It’s too complicated” (five

disagreed strongly). Two thirds strongly disagreed with

the statement: “None of it really fits in with what I teach;”

the other three were neutral.

C. Workshop Component s—How Well Understood?,

How Relevant?, How Likely to Implement?

Figure 7 provides insight into how the individual

components of the workshop were regarded. In all cases,

the components were better understood than they were

perceived as useful. Further, the technical tools were

ranked higher in value than the theoretical models. The

threat modeling tool, the SDL, and the cases were the

highest ranked and in that order. The software

reengineering process was ranked in the middle, while the

APM and pedagogical models were least valued.

Participants were asked to rate how well they understood

each workshop component, how relevant it was to the

classes they teach, and how likely they were to implement

it in their teaching within the next year. All questions used

a scale from 1 (Not at all) to 5 (Completely or Extremely).

The responses are listed in descending order of relevance

rating. These reinforce the comments and other data

indicating that participants felt the least able to

incorporate the theoretical models and the least

convinced of their relevance to their students, and most

able to apply the examples, methods, and tools, which

were seen as more relevant.

3.6

4.3

2.6

3.6

3.1

2.9

3.3

3.1

3.9

1 2 3 4 5

looking forward to tomorrow’s session?

useful or relevant today’s information?

meet your needs?

fulfill your expectations?

understand the material covered after lunch?

understand (Day 1) or useful (Day 2) the material

covered before lunch?

Rating Scale

A
s
p

e
c
ts

 o
f
w

o
rk

s
h

o
p

Figure 5: Workshop Assessment

Day 1

Day 2

Not at all (1) Completely

(5)

 2014 HUIC Education & STEM Conference

 Honolulu, Hawaii June 16-18, 2014

The threat modeling tool was seen as the most relevant

topic covered, with seven of the nine selecting a response

on the “relevant” side of the scale—four of them

indicating “completely relevant.” The other two selected

the scale’s midpoint. This was also the best understood

workshop component with seven selecting a response

above the midpoint (six of these selecting the top

response), while the other two selected the scale’s

midpoint; however, only four indicated that they are

likely to incorporate this tool into their curricula in the

next year (two of these are extremely likely to do so) and

three selected a response just below the midpoint.

Participants are as likely to implement the next two

components:

 The SDL approach: eight understood it. Six found it

relevant, and two rated its relevance below the

midpoint. Five are likely to implement it, while three

are unlikely.

 The cases and examples: seven understood them. Six

found them relevant and the others selected the scale’s

midpoint. Four are likely to implement them, and four

selected the midpoint.

Overall, the APM model and the associated target,

system, and threat cubes were seen as least relevant to

the courses taught by the participants. One individual

reported that s/he did not understand the APM model at

all, while two said they understood it completely. One

person said that it was not at all relevant to his/her classes

and two said it was completely relevant. Two are not at

all likely to incorporate it into their curriculum, and two

are extremely likely to do so.

D. Final Participant Comments

Participants were generous with their final comments.

When asked what components of the workshop we

should continue to use in the future, participants were

evenly divided between the practical and the theoretical,

with three suggesting we keep the case examples and

hands on exercises, and another three suggesting we

keep the APM model.

When asked what to change, three asked for less theory.

There were several suggestions regarding format: more

opportunity to process the information through more

discussion, more group work, and more hands-on

1.3

1.6

1.7

1.9

2.1

2.3

2.4

2.8

2.8

3.2

3.2

1 2 3 4 5

I don’t believe the problem is significant enough to warrant

the effort

It’s too complicated

None of it really fits in with what I teach

I didn’t understand it well enough

I’m not sure which cases or examples are most important

The concepts are not relevant to my students

The concepts are at too high a level to be useful

I don’t have enough time to rework my curriculum to

include the whole model and I’m not sure which …

Not enough teaching time - I can’t fit it in with the other

topics I must cover

I’d need resources or other support to be confident enough

to make the change

I have too much to do already

Rating Scale

A
s
p

e
c
ts

 o
f
w

o
rk

s
h

o
p

Figure 6: Potential Barriers to Implemenation

Strongly

Disagree

Strongly

Agree (5)

 2014 HUIC Education & STEM Conference

 Honolulu, Hawaii June 16-18, 2014

exercises. One suggested adding a validation library for

each programming language.

Participants were asked to reflect on why it has been hard

to teach secure coding in their courses. Two themes

emerged: not knowing what to teach in their classes; and

not having time to do it. One person also brought up the

need to collaborate with other faculty members within

his/her program.

In a follow up question, participants were asked whether

secure code content remains difficult to teach after

exposure in the workshop. Five indicated that it would

not be as difficult to teach secure coding concepts, with

two adding that the workshop moved their thinking

forward on the subject. Two indicated that it would be

difficult, still, but for different reasons. One needed more

concrete examples to fully grasp the subject and the other

had a concern that security must be taught in context,

suggesting that modules might be difficult to insert as is,

depending on context, calling for a “deeper approach” to

instruction in secure coding.

When asked for other comments, two individuals offered

some additional feedback, suggesting ways to make the

workshop more effective in the future. Both suggested

making future workshops more product-oriented. This

perspective was consistent with other comments made

by the same individuals—that we could better meet the

needs of future workshop attendees from computer

science programs who are likely more inclined to

learning from hands-on exercises.

VI. LESSONS LEARNED AND FUTURE WORK

Through the secure coding workshop, we confirmed that

lack of time (either in the curriculum itself or in faculty

time to develop new course materials or alter existing

ones) hindered participants from injecting security topics

into their own courses, although they recognized that

2.4

2.6

2.7

2.7

2.8

3.0

3.4

3.4

3.3

3.1

3.1

3.2

3.4

3.4

3.6

3.8

4.0

4.2

3.8

3.7

4.0

3.9

3.8

3.6

4.2

4.3

4.4

1 2 3 4 5

Threat cube

System cube

Target cube

APM

The re-engineering approach

Pedagogical model

The cases and examples

SSDLC approach

Threat modeling tools

Rating Scale

A
s
p

e
c
ts

 o
f
w

o
rk

s
h

o
p

Figure 7: Attitudes and Plans Regarding Workshop Topics

How well understood

How relevant

Not at all Completely/

Extremely

(5)

 2014 HUIC Education & STEM Conference

 Honolulu, Hawaii June 16-18, 2014

security topics are important. Secondly, although

participants could easily understand secure coding

concepts—like SDL, the APM model, and threat

modeling—and liked the hands-on exercises, they

strongly wanted more already prepared videos and

assignment examples that demonstrate the

transformation of nonsecure to secure code.

This surprised us since we expected that being able to

produce their own assignments from existing legacy

assignments would engage them. We attributed this lack

of interest in our process to lack of time to prepare their

own materials, even if given an efficient process to

convert already created materials . We did conclude from

their responses that the software reengineering approach

using UML modeling was a good method for teaching

secure coding concepts, but primarily if the examples are

presented in completed videos, instead of having the

participants apply the method to their own legacy lab

assignments to produce exercises themselves.

Based on the participants’ responses, we concluded that

the Microsoft TMT and SDL were well-understood;

however, likeliness-to-implement was not as high, again

given time constraints of the majority of participants. We

concluded that preparing for the next workshop offering,

we must create threat model examples and a variety of

different cases in different languages so that they are

ready to use by participants , as opposed to instructing

them on how to build their own. Given the popularity of

the TMT and the SDL, we plan to invite guest lecturers

from industry to discuss how these tools have assisted

them in improving the security of their products. We

expect that this added emphasis may encourage

instructors to use these tools in their classes.

Although they appeared to have a high degree of

acceptance, the cases and examples developed for the

workshop, in retrospect, could have been improved.

Participants challenged whether the cases were

sufficiently “real life.” To improve their relevance, we

intend to tie our cases more directly to examples from

NVD and CWE.

The APM model was seen as a reasonable way to

position the subject of secure code within the

information assurance body of knowledge, although

participants were vague about how to use the model in

their classes. Since the model is a first draft and will be

subject to additional reviews and iterations, this response

is not surprising. Once the elements in the cubes are

refined further, participants may see how the model

could be useful within a secure code curriculum.

The tepid response to using the re-engineering approach

was not entirely surprising, since many participants are

not familiar with UML diagrams; however, when

presented with videos of a completed reengineering

process, including narrative, the approach made more

sense. In future presentations, we need to show more

clearly the integration between the re-engineering

process and each case study. In the future, we plan to

create instructor sets for each case that contain: power

point presentations for lectures, demo videos that show

use and misuse cases, demo videos that show potential

attack vectors using UML diagrams, as well as how to

reverse engineer the attacks using UML diagrams --

relating the attacks to the NVD and CWE, and student

assignments. By doing this, participants may see more

readily how our re-engineering approach can be useful

to reverse engineer nonsecure legacy applications into

more secure target applications.

Feedback from the workshop was the basis for major

changes to the next iterations . Several more workshops

were planned in Hawaii and Seattle, this time for entire

faculties who expressed interest in this work [16]. We

expected, and found, that additional data from a larger

population of faculty, both interested and not interested

in secure coding, gave further insight into improving

workshop content and the uptake of secure coding

concepts into computer and information science

curricula. Further, these workshops were delivered using

guest lecture videos developed under the Sea-to-

Shining-Sea project, another NSF grant leveraged to

support this activity. Those participating in the workshop

were encouraged to incorporate these video curricular

assets into secure coding courses they planned to deliver.

This entire pedagogical process through which secure

coding was delivered has been documented in [17].

ACKNOWLEDGMENT

This research has been supported by the NSF (National

Science Foundation) DUE (Division of Undergraduate

Education) Federal Cyber Service: Scholarship for

Service (SFS) under Grants #0912109 and #1128989.

REFERENCES
[1] Endicott-Popovsky, B.E., Frincke, D., Popovsky, V.

(2005). Secure Code: The Capstone Class in an IA
Track . In Proceedings of the 9th Colloquium for
Information Systems Security Education, Georgia
Institute of Technology: Atlanta, GA, pp.100-108.

[2] Symantec’s Vulnerability Trends
http://www.symantec.com/business/threatreport/topi
c.jsp?id=vulnerability_trends&aid=total_number_of
_vulnerabilities (Accessed on 6/27/2011)

[3] Perrone, L. F., Aburdene, M., and X. Meng. (2005).
Approaches to undergraduate instruction in
computer security. In Proceedings of the American
Society for Engineering Education Annual
Conference & Exposition: Portland, OR.

[4] Chung, S. and Endicott-Popovsky, B. (2010).
Software reengineering based security teaching . In

 2014 HUIC Education & STEM Conference

 Honolulu, Hawaii June 16-18, 2014

Proceedings of the 7th Annual International
Conference on International Conference on
Cybernetics and Information Technologies, Systems
and Applications (CITSA 2010). Orlando, FL.

[5] Taylor, B. and Azadegan, S. (2008). Moving beyond
security tracks: Integrating security in CS0 And CS1.
In Proceedings of the 38th SIGCSE Technical
Symposium on Computer Science Education,
Portland, OR, p. 320-324.

[6] Simpson, J., Simpson, M., Endicott-Popovsky, B.,
and Popovsky, V. Secure software education: A
contextual model-based approach. International
Journal of Secure Software Engineering, 1(4), 35-61,
October-December 2010.

[7] Simpson, J. and Endicott-Popovsky, B. (2010).
System security capability assessment model
development and application . In Proceedings of 20th
Anniversary INCOSE International Symposium
(INCOSE). Chicago, IL.

[8] McCumber, J. (1991). Information systems security:
A comprehensive model. In Proceedings of 14-th
NIST-NCSC National Computer Security
Conference, Washington D.C., pages 328–337,
October 1991.

[9] SSE-CMM (Systems Security Engineering -
Capability Maturity Model) http://www.sse-
cmm.org/index.html (Accessed on 6/27/2011)

[10] OWASP Software Assurance Maturity Model.
https://www.owasp.org/index.php/Category:Softwar
e_Assurance_Maturity_Model
(Accessed on 6/27/2011)

[11] Microsoft Security Development Lifecycle
http://www.microsoft.com/security/sdl/discover/def
ault.aspx (Accessed on 6/27/2011).

[12]Microsoft’s SDL Threat Modeling Tool,
http://www.microsoft.com/security/sdl/adopt/threat
modeling.aspx (Accessed on 6/27/2011)

[13] Howard, M and LeBlanc, D. (2002). Writing Secure
Code, (2nd ed.). Seattle: Microsoft Press.

[14] Hansel, L., Chung, S., Endicott-Popovsky, B. (2011).
Software reengineering approach to teaching secure
coding Practices. In Proceedings of the 15th
Colloquium for Information Systems Security
Education (CISSE 2011), June 13-15, 2011, Fairborn,
OH.

[15] Chung, S., Won, D., Baeg, S. H., Park, S. (2009).

Service-Oriented Reverse Reengineering: 5W1H

model-driven re-documentation and candidate

services identification. In Proceedings of IEEE

International Conference on Service-Oriented

Computing and Applications (SOCA’09) December

14-15, 2009, Taipei, Taiwan.

[16] Endicott-Popovsky, B., Chung, S., Popovsky, V.
(2012 June). Provisioning secure coding curricular

resources: Toward robust software. In Proceedings

of the 16th Colloquium for Information Systems

Security Education, Buena Vista, Florida. Stoughton,

WI: The Printing House Inc., pp. 27-33.

[17] Endicott-Popovsky, B. and Popovsky, V. (2013).

Application of pedagogical fundamentals for the

holistic development of cybersecurity professionals.

ACM Inroads, 5(1), 57-68.

http://portal.acm.org/citation.cfm?id=1352135.1352246&coll=ACM&dl=ACM&CFID=10441783&CFTOKEN=75867302
http://portal.acm.org/citation.cfm?id=1352135.1352246&coll=ACM&dl=ACM&CFID=10441783&CFTOKEN=75867302

