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Abstract: Two kinds of integrity measures—contamination
and suppression—are introduced. Contamination measures
how much untrusted information reaches trusted outputs; it
is the dual of information-flow confidentiality. Suppression
measures how much information is lost from outputs; it does
not have a confidentiality dual. Two forms of suppression
are considered: programs and channels. Program suppression
measures how much information about the correct output
of a program is lost because of attacker influence and
implementation errors. Channel suppression measures how
much information about inputs to a noisy channel is missing
from channel outputs. The relationship between quantitative
integrity, confidentiality, and database privacy is examined.
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I. INTRODUCTION

Many integrity requirements for computer systems are
qualitative, but quantitative requirements can also be valu-
able. For example, a system might combine data from
trusted and untrusted sensors if the untrusted sensors cannot
corrupt the result too much. As another example, we might
add noise to a database, thereby protecting privacy, if the
resulting anonymized database still contains enough uncor-
rupted information to be useful for statistical analysis. Yet
methods for quantification of corruption—that is, damage
to integrity—have received little attention to date, whereas
quantification of information leakage has been a topic of
research for over twenty years [1], [2].

To quantify corruption, a formal definition of “integrity”
is required. We know of no such widely accepted definition,
although the widely accepted informal definition seems to
be “prevention of unauthorized modification of informa-
tion” [3]–[8]. So we take two distinct notions of informa-
tion modification as points of departure: taint analysis and
program correctness. These lead to two distinct measures of
corruption that we name “contamination” and “suppression.”

Contamination generalizes taint analysis [9]–[13], which
tracks information flow from tainted inputs to outputs that
are supposed to be untainted—or, using alternative terminol-
ogy, from untrusted inputs to outputs that are supposed to
be trusted. This flow results in contamination of the trusted
outputs. Trusted outputs are not supposed to be influenced by
untrusted information, so contamination corrupts integrity.
We might be willing to deem a program secure if it allows

only limited contamination, even though taint analysis would
deem the same program to be insecure. So quantification of
contamination would be useful.

Flow between untrusted and trusted objects was first
studied by Biba [14], who identified a duality between
models of integrity and confidentiality. The confidentiality
dual to contamination is leakage, which is information
flow from secret inputs to public outputs. Previous work
has developed measures of leakage based on information
theory [15] and on beliefs [16]. This paper adapts those
measures to contamination.1 Through the Biba duality, we
obtain a measure for corruption from a measure for leakage.

Suppression, our other measure for corruption, is derived
from program correctness. For a given input, a correct
implementation should produce an output o permitted by a
specification. The output might be permitted to differ from
o provided the output conveys the same information as o.
An implementation might, for example, produce all the bits
in the binary representation of o but in reverse order. Or the
implementation might produce o xor k, where k is a known
constant. Any knowledgeable user of these implementations
could recover o from the implementation’s output.

Conversely, the output of an incorrect implementation
would fail to convey all the information about o. For ex-
ample, a (somewhat) incorrect implementation might output
only the first few bits of o; or it might output o with
probability p and output garbage with probability 1−p; or it
might output o xor u, where u is an untrusted input. In each
case, we say that program suppression of information about
the correct output has occurred. Implementation outputs are
not supposed to omit information about correct outputs, so
program suppression corrupts integrity. Yet we might be
willing to use an implementation that produces sufficient
information about the correct output, hence exhibits little
program suppression, even though a traditional verification
methodology (e.g., Hoare logic) would deem the imple-
mentation to be incorrect. So quantification of program
suppression would be useful.

The echo specification “o := t” gives rise to an im-
portant form of program suppression that we call channel

1Newsome et al. [17] adapt the same information-theoretic metric to
measure what they call quantitative influence (cf. §VI).



suppression. The echo specification stipulates that a correct
output o is the value of input t, similar to the Unix echo
command. For the echo specification, our model of program
suppression simplifies to the information-theoretic model of
communication channels [18], in which a message is sent
through a noisy channel. The receiver cannot observe the
sender’s inputs or the noise but must attempt to determine
what message was sent. Sometimes the receiver cannot
recover the message or recovers an incorrect message. For
example, a noisy channel could be modeled by imple-
mentation “o := t xor u”, in which noise supplied by
the attacker in untrusted input u causes information about
correct output t to be lost. The channel thus damages the
integrity of information.

With programs and channels, suppression occurs when
information is lost. This paper shows how to use information
theory to quantify suppression, including how to quantify the
attacker’s influence on suppression. We start with channel
suppression. Then we generalize to program suppression,
giving both information-theoretic and belief-based defini-
tions. Applying the Biba duality to these definitions yields no
meaningful confidentiality dual. So the classical duality of
confidentiality and integrity was, in retrospect, incomplete.

We might suspect that contamination generalizes sup-
pression, or vice versa, but this is not the case. Consider
the following three program statements, which take t as
trusted input and u as untrusted input, and produce o as
trusted output. Suppose that these statements are potential
implementations of echo specification “o := t”:

• o := (t,u), where (t,u) denotes the pair whose com-
ponents are t and u. This program exhibits (only)
contamination, because trusted output contains infor-
mation derived from untrusted input. A user of this
program’s output might filter out and ignore contam-
inant u, but that’s irrelevant: the contaminant damages
integrity just by its presence, as in taint analysis.
Contamination is concerned only with measuring the
amount of contaminant in the output—not what the user
does with the output. This program does not exhibit
program suppression, because its output contains all the
information about the value of t.

• o := t xor n, where n is randomly generated noise.
This program exhibits (only) program suppression,
because information about the correct output is lost.
Suppression concerns that loss; suppression is not con-
cerned with the presence of contaminant. In fact, this
program cannot exhibit contamination, because it has
no untrusted inputs.

• o := t xor u. This program exhibits contamination,
because untrusted information affects trusted output.
This program also exhibits program suppression, be-
cause the noise of u causes information about the
correct output to be lost.

So although contamination and suppression both are kinds
of corruption, they are distinct phenomena.

In addition to introducing measures for corruption, this
paper examines the relationship between the information-
theoretic and belief-based approaches to quantifying infor-
mation flow. We show that, for individual executions of
a program, the belief-based definition is equivalent to an
information-theoretic definition. And we show that, in ex-
pectation over all executions, the belief-based definition is a
natural generalization of an information-theoretic definition.

Finally, we revisit work on database privacy. Databases
that contain information about individuals are sometimes
anonymized and published to enable statistical analysis.
The goal is to protect the privacy of individuals, while
still providing useful data for analysis. Mechanisms for
anonymization suppress information—that is, integrity is
sacrificed for confidentiality. Using our measure for channel
suppression along with a measure for leakage, we are able to
make this intuition precise and to analyze database privacy
conditions from the literature.

We proceed as follows. Models for quantifying contami-
nation and suppression are given in §II and §III. Belief-based
definitions and their relationship to information-theoretic
definitions are examined in §IV. Database privacy is ana-
lyzed in §V. Related work is discussed in §VI, and §VII
concludes. All proofs appear in the accompanying technical
report [19].

Basic notions from information theory (e.g., entropy and
mutual information) are used throughout the paper. Their
definitions can be found in the accompanying technical
report [19] or in any introductory text [20], [21].

II. QUANTIFICATION OF CONTAMINATION

Three agents are involved in our model of program
execution: a system, a user, and an attacker.2 The system
executes the program, which has variables categorized as
input, output, or internal. Input variables may only be read
by the program, output variables may only be written by
the program, and internal variables may be read and written
but may never be observed by any agent except the system
itself. The user and the attacker supply inputs by writing the
initial values of input variables. These agents receive outputs
by reading the final values of output variables. The attacker
is untrusted, whereas the user is trusted.

Our goal is to quantify the information about untrusted in-
puts that contaminates trusted outputs. This goal generalizes
taint analysis, which just determines whether any informa-
tion about untrusted inputs contaminates trusted outputs. We
accomplish our goal by quantifying the information the user
learns about untrusted inputs by observing trusted inputs and
outputs:

2Although we phrase our theory in terms of programs, other notions of
computation could be used. All we require is that there are inputs, outputs,
and a way to derive output distributions from input distributions.
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Figure 1. Contamination model

Definition: Contamination is the amount of information a
user learns about untrusted inputs by observing trusted
inputs and outputs.

Our use of terms “learning” and “observation” might suggest
quantification of confidentiality. The resemblance is delib-
erate, because we seek a definition of integrity that is dual
to confidentiality. In particular, our approach is dual to the
technique of Clark et al. [15], [22] for quantifying leakage.3

The definition of contamination engenders two restrictions
on the user’s access to variables. First, the user may not
directly read untrusted inputs. Otherwise, we would be
quantifying something trivial—the amount of information
the user learns about untrusted inputs by observing untrusted
inputs. Second, the user may not read untrusted outputs,
because we are interested only in the information the user
learns from trusted outputs. In addition to these restrictions,
we do not allow the user to write untrusted inputs. So the
user may access only the trusted variables. Similarly, the
attacker may access only the untrusted variables.4 These
access restrictions agree with the Biba integrity model [14]:
they prohibit reading up (the user cannot read untrusted
information) and writing down (the attacker cannot write
trusted information). The resulting communication model for
contamination is depicted in figure 1.

A. Contamination in Single Executions

Information theory explains the behavior of channels.
A channel, like a program, accepts inputs and produces
outputs. So information flow can be quantified by modeling a
program as a channel and using information theory to derive
the amount of information transmitted over the channel.

A channel’s inputs are characterized by a probability
distribution of individual input events. Channels might be
noisy and introduce randomness into output events, so a
channel’s outputs are also characterized by a probability
distribution. Let tin , uin , and tout denote trusted input,
untrusted input, and trusted output events. (Each event may

3Hence, readers familiar with that work will be unsurprised by our
final definition of expected contamination in equation (6), and perhaps
unsurprised by the development leading up to it. But we present the full
development because it illuminates each step through the lens of integrity
(rather than confidentiality), thus increasing confidence in our definitions.
It also makes this paper self-contained.

4Flows from trusted to untrusted need not be prohibited. So the attacker
could be allowed to read trusted inputs or outputs, and the user could be
allowed to write untrusted inputs. But for simplicity, we don’t consider
those flows in this paper.

comprise the values of several input or output variables.)
Also let Tin , Uin , and Tout denote probability distributions
on trusted inputs, untrusted inputs, and trusted outputs.5

Mutual information characterizes the quantity of informa-
tion that can be learned about channel inputs by observing
outputs. Let I(uin , tout) denote the mutual information
between events uin and tout—that is, the amount of in-
formation either event conveys about the other.6 Note that
I(·, ·) is mutual information between single events, not the
more familiar mutual information between distributions of
events. Let I(uin , tout | tin) denote the mutual information
between events uin and tout , conditioned on the occurrence
of event tin .

The quantity C1 of contamination of trusted outputs by
untrusted inputs in a single execution, given the trusted
inputs, is defined as follows:

C1 , I(uin , tout | tin). (1)

(The subscript 1 is a mnemonic for “single.”)
Consider the following program:

oT := iU xor jT (2)

Suppose that variables oT, iU, and jT are one-bit trusted
output, untrusted input, and trusted input, respectively, and
that the values of iU and jT are chosen uniformly at random.
Intuitively, the user should be able to infer the value of iU by
observing jT and oT, hence there is 1 bit of contamination.
And according to definition (1) of C1, the quantity of
contamination caused by program (2) is indeed 1 bit. For
example, the calculation of I(iU = 0,oT = 1 |jT = 1)
proceeds as follows:

I(iU = 0,oT = 1 |jT = 1)

= − log
Pr(iU = 0 |jT = 1)Pr(oT = 1 |jT = 1)

Pr(iU = 0,oT = 1 |jT = 1)

= − log
(1/2)(1/2)

1/2

= 1.

And calculating I(iU = a,oT = b |jT = c) for any a, b, and
c such that b = a xor c would yield the same contamination
of 1 bit. If b 6= a xor c, then the calculation would yield an
undefined quantity because of division by zero. This result
is sensible, because such a relationship among a, b, and c
is impossible with program (2).

5Distribution Tout could be defined in terms of Tin , Uin , and some
representation of the channel—for example, if the channel is represented
as a probabilistic program, the denotational semantics of that program
describes how to calculate Tout [23].

6Some readers might be more familiar with I(· ; ·) as a notation for mu-
tual information. We use a comma, rather than a semi-colon, to emphasize
that the notation is symmetric.
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B. Contamination in Sequences of Executions

Given C1, which provides a means to quantify contami-
nation for single executions, we can quantify the contami-
nation over a sequence of single executions. As an example,
consider the following program, where operator & denotes
bitwise AND:

oT := iU &jT (3)

Suppose that the attacker chooses a value for untrusted input
iU and that the user is allowed to execute the program
multiple times. The user chooses a potentially new value for
trusted input jT in each execution, but the single value for
iU is used throughout. Also, suppose that all variables are k
bits and that iU is chosen uniformly at random. Intuitively,
the contamination from this program in a single execution is
the number of bits of jT that are set to 1. Thus, a user that
supplies 0x0001 for jT learns7 the least significant bit of
iU (so there is 1 bit of contamination); 0x0011 yields the
two least significant bits (2 bits of contamination), etc. But if
a user executes the program twice, supplying first 0x0001
then 0x0011, the user learns a total of only 2 bits, not 3
(= 1+2). Directly summing C1 for each execution provides
only an inexact upper bound on the contamination.

To calculate the exact amount of contamination for a
sequence of executions, note the following. The untrusted
input is chosen randomly at the beginning of the sequence.
Each successive execution enables the user to refine knowl-
edge of that untrusted input. So each successive calculation
of contamination should use an updated distribution of
untrusted inputs, embodying the user’s refined knowledge
about the particular untrusted input chosen at the beginning
of the sequence.8 Let Uj be a random variable representing
the user’s accumulated knowledge in execution j about the
untrusted input event, and let tjout and tjin be the trusted
input and output events in that execution. The distribution
of Uj+1 is defined in terms of the distribution of Uj :

Pr(Uj+1 = uin) = Pr(Uj = uin | tjout , t
j
in). (4)

So the updated distribution is obtained simply by condition-
ing on the trusted input and output. This conditioning is
repeated after each execution.

We thus obtain the following formula for the total con-
tamination ~C in a sequence of executions:

~C =
∑

j

I(uj
in , tjout | t

j
in),

where uj
in is the untrusted input event in execution j, and

mutual information I(·) is calculated according to distribu-
tion Uj on untrusted inputs.

7Recall that contamination is the amount of information a user learns
about untrusted input by observing trusted input and output.

8Readers familiar with the use of beliefs in quantification of information
flow will recognize this distribution as representing a belief; we discuss
this matter further in §IV.

Returning to program (3), initial distribution U1 on iU
is uniform. But distribution U2, obtained by supplying
0x0001 as the first input, is uniform over iU that have
the same least significant bit as jT. Thus, the user learns
only 1 bit by supplying 0x0011 in the second execution.
The total contamination according to ~C is exactly 2 bits for
the sequence—which is what our intuition suggested.

C. Contamination in Expectation

C1 quantifies contamination in a single execution. It could
be used at runtime by an execution monitor [24] to constrain
how much contamination occurs during program execution.
We might, however, be interested in how much contamina-
tion occurs on average over all executions of a program—a
quantity that might be conservatively bounded by a static
analysis. We now turn our attention to that quantity.

The expected quantity C of contamination of trusted
outputs by untrusted inputs, given the trusted inputs, is the
expected value of C1:

C = E[C1]. (5)

The right-hand side of equation (5) can be rewritten as the
mutual information I(Uin , Tout |Tin) between distributions
Uin and Tout , conditioned on observation of Tin . That yields
our definition of expected contamination:

C , I(Uin , Tout |Tin). (6)

Definition (6) of C yields an operational interpretation
of contamination. In information theory, the capacity of
a channel is the maximum quantity of information, over
all distributions of inputs, that the channel can transmit.
Shannon [18] proved that channel capacity enjoys an oper-
ational interpretation in terms of coding theory: a channel’s
capacity is the highest rate, in bits per channel use, at which
information can be sent over the channel with arbitrarily
low probability of error. Therefore, the maximum quantity
of contamination should also be the highest rate at which the
attacker can contaminate the user. We leave investigation of
this interpretation as future work.

D. Leakage

Clark et al. [15], [22] define quantity L of leakage from
secret inputs Sin to public outputs Pout , given public inputs
Pin , as follows:

L , I(Sin , Pout |Pin). (7)

Replacing “untrusted” with “secret” and “trusted” with “pub-
lic” in equation (6) yields equation (7). Contamination and
leakage are therefore information-flow duals: their defini-
tions are the same, except the ordering of security levels
is reversed. For example, the definition of C conditions on
Tin , which represents inputs provided by a user with a high
security level (because the user is cleared to provide trusted
inputs); whereas the definition of leakage conditions on

4



Program
Attacker Attacker

Sender Receiver

uin uout

tin tout

Figure 2. Channel suppression model

Pin , which represents inputs provided by a user with a low
security level (because the user is not cleared to read secret
inputs). So Biba’s qualitative duality for confidentiality and
integrity [14] extends to these quantitative models.

III. QUANTIFICATION OF SUPPRESSION

A. Channel Suppression

To quantify channel suppression, we refine our model of
program execution by replacing the user with two agents,
a sender and receiver. The receiver, by observing the pro-
gram’s outputs, attempts to determine the inputs provided by
the sender. The program models a channel in which inputs
are messages, and the receiver attempts to determine what
messages were sent. For example, the sender might be a
database, and the program might construct a web page using
queries to the database; the receiver attempts to reconstruct
information in the database from the incomplete information
in the web page. Information that cannot be reconstructed
has been suppressed.

Definition: Channel suppression is the amount of infor-
mation a receiver fails to learn about trusted inputs by
observing trusted outputs.

As with contamination, the program receives trusted in-
puts as the initial values of variables and produces trusted
outputs as the final values of variables. But now the sender
writes the initial values of trusted inputs, and the receiver
reads the final values of trusted outputs. These are the only
ways that the sender and receiver may access variables. We
continue to model an attacker, who attempts to interfere with
trusted outputs by writing the initial values of untrusted
inputs. For simplicity, the attacker is not allowed to read
trusted inputs or outputs. This communication model for
channel suppression is depicted in figure 2.

We first define channel suppression for single executions.
As in our model of contamination, let tin and tout be trusted
input and trusted output events. Since I(tin , tout) is the
quantity of information obtained about trusted inputs by
observing trusted outputs, I(tin , tout) is the quantity CT1
of channel transmission from the sender to the receiver in a
single execution:

CT1 , I(tin , tout). (8)

Let I(tin |tout) denote the information conveyed by the
occurrence of event tin , conditioned on observation of the

occurrence of tout . We can rewrite the right-hand side of
equation (8):

CT1 = I(tin)− I(tin |tout). (9)

Quantity I(tin) is the total information that the receiver
could learn about the trusted input, and I(tin |tout) is what
remains to be learned after the receiver observes the trusted
output. So I(tin |tout) is the quantity of information that
failed to be transmitted.9 Therefore, I(tin |tout) is the quan-
tity CS1 of channel suppression in a single execution:

CS1 , I(tin |tout). (10)

Although untrusted input uin does not directly appear
in equations (8) or (10), they do not ignore the attacker’s
influence on channel suppression: trusted output tout , which
does appear, can depend on uin . Also, recall that the
definition (1) of contamination C1 conditions on uin ; equa-
tions (8) and (10) do not because the receiver cannot directly
observe untrusted input—unlike the user, who could in the
contamination model.

We next define channel suppression in expectation. Let
I(Tin , Tout) denote the mutual information between dis-
tributions Tin and Tout , and let H(Tin |Tout) denote the
entropy of distribution Tin , conditioned on observation of
Tout . (As before, Tin and Tout are probability distributions
on trusted inputs and trusted outputs.) By taking the expec-
tation of CT1 and CS1, we obtain the expected quantities of
channel transmission CT and channel suppression CS:10

CT , I(Tin , Tout), (11)

CS , H(Tin |Tout). (12)

These definitions account for the attacker’s influence on
channel transmission and channel suppression, because dis-
tribution Tout depends on the attacker’s distribution Uin

on untrusted inputs. Also, these definitions should yield an
operational interpretation in terms of coding theory; we leave
that interpretation as future work.11

As an example, consider the following program:

oT := iT xor rnd(1) (13)

Variables iT and oT are one-bit trusted input and output
variables. Program expression rnd(x) returns x uniformly
random bits. Suppose that trusted input distribution Tin is
uniform on {0, 1}. Then channel transmission CT is 0 bits

9Alternatively, the right-hand side of equation (8) could be rewritten as
I(tout )− I(tout |tin ). Perhaps this formula could also yield a measure for
integrity, were we interested in backwards execution of programs—that is,
computing inputs from outputs.

10Note that expected channel suppression CS is defined using entropy
H, not using mutual information I, even though channel suppression CS1
is defined using self-information I . This notational quirk is inherited from
information theory and occurs because entropy—not mutual information—
is the expectation of self-information.

11The basis of that interpretation would be the capacity of the channel
from trusted inputs to trusted outputs (cf. §II-C).
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and channel suppression CS is 1 bit. These quantities are
intuitively sensible: because of the bit of random noise added
by the program, the receiver cannot learn anything about iT
by observing oT.

Similarly, consider the following program:

oT := iT xor jU (14)

Variable jU is a one-bit untrusted input. Suppose that un-
trusted input distribution Uin is uniform. Then program (14)
exhibits the same behavior as program (13): 0 bits of channel
transmission and 1 bit of channel suppression. Because of
the bit of random noise added by the attacker, the receiver
cannot learn anything about iT by observing oT.

Programs (13) and (14) both cause 1 bit of channel
suppression, but the source of that channel suppression is
different. For program (13), the source is program ran-
domness; for program (14), it is the attacker. We develop
definitions that distinguish between these sources, next.

1) Attacker-controlled channel suppression: Let CSP de-
note the quantity of channel suppression attributable solely
to the program—that is, the quantity that would occur if the
attacker’s input were known to the receiver:

CSP , H(Tin |Tout , Uin). (15)

This definition differs from definition (12) of channel sup-
pression CS only by the additional conditioning on Uin ,
which has the effect of accounting for the attacker’s un-
trusted inputs. Any remaining channel suppression must
come solely from the program.

Define the quantity of channel suppression CSA under the
attacker’s control as the difference between the maximum
amount of channel suppression caused by the attacker’s
choice of Uin and the minimum (which need not be 0
because of channel suppression attributable solely to the
program):

CSA , max
Uin

(CS)−min
Uin

(CS). (16)

(CS is a function of Tout , which is a function of Uin , so
quantifying over Uin is sensible.)

For program (13), quantity CSP of program-controlled
channel suppression is 1 bit, and quantity CSA of attacker-
controlled channel suppression is 0 bits. The converse
holds for program (14), which exhibits 0 bits of program-
controlled channel suppression and 1 bit of attacker-
controlled channel suppression.

The following program exhibits both attacker- and
program-controlled channel suppression:

o2T := i2T xor i2U xor rnd(1) (17)

All variables in program (17) are two-bit. One bit of
program-controlled channel suppression CSP is caused by
the xor with rnd(1). But the attacker controls the rest
of the channel suppression. If the attacker chooses i2U
uniformly at random, the channel suppression is maximized

and equal to 2 bits; whereas if the attacker makes i2U a
constant (e.g., always “00”), the channel suppression is the
minimal 1 bit caused by rnd(1). Calculating CSA yields 1
(= 2− 1) bit of attacker-controlled channel suppression.

2) Error-correcting codes: An error-correcting code adds
redundant information to a message so that information loss
can be detected and corrected. One of the simplest error-
correcting codes is the repetition code Rn [25], which adds
redundancy by repeating a message n times to form a code-
word. For example, R3 would encode message 1 as code-
word 111. The code-word is sent over a noisy channel, which
might corrupt the code-word; the receiver reads this possibly
corrupted word from the channel. For example, the sender
might send code-word 111, yet the receiver could receive
word 101. To decode the received word, the receiver can
employ nearest-neighbor decoding: the nearest neighbor of a
word w is a code-word c that is closest to w by the Hamming
distance. (The nearest neighbor is not necessarily unique
for some codes, in which case an arbitrary nearest neighbor
is chosen.) Treating words as vectors, Hamming distance
d(w, x) between words w and x is the number of positions
i at which wi 6= xi. For the repetition code, nearest-neighbor
decoding means that a word is decoded to the symbol that
occurs most frequently in the word. For example, word 101
would be decoded to code-word 111, thus to message 1; but
word 001 would be decoded to message 0.

Consider the following program BSC, which models the
binary symmetric channel studied in information theory:

BSC : w := m xor rndp(n)

Variable m, which contains a message, is an n-bit trusted
input, and variable w, which contains a word, is an n-bit
trusted output. Expression rndp(x), in which p is a constant,
returns x independent, random bits. Each bit is distributed
such that 0 occurs with probability p and 1 occurs with prob-
ability 1−p. (So rnd(x), used in program (13), abbreviates
rnd0.5(x).) Thus, each bit of input m has probability 1− p
of being flipped in output w.

Suppose that n = 1 and that the distribution of trusted
input m is uniform. Then the probability that BSC outputs
w such that w = m holds is p. So quantity CS1 of channel
suppression is − log p. Next, suppose that the sender and
receiver employ repetition code R3 with program BSC.
The sender encodes a one-bit input m into three bits and
provides those as input to BSC (so now n = 3). The receiver
gets a three-bit output and decodes it to bit w. Denote
this composed program as R3(BSC). The probability that
w = m holds is now p3 + 3p2(1− p), which can be derived
by a simple argument. (See the accompanying technical
report [19].) The amount of channel suppression CS1 is thus
− log(p3 + 3p2(1 − p)), which is less than − log p for any
p > 1

2 .
So for any p > 1

2 (i.e., for any channel at least slightly
biased toward correct transmission) the channel suppression
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from R3(BSC) is less than the channel suppression from
BSC. We conclude that repetition code R3 improves channel
transmission. Although this conclusion is unsurprising, it
illustrates that our theory of channel suppression suffices
to re-derive a well-known fact from coding theory.

3) Channel suppression vs. contamination: Recall pro-
gram (14), restated here:

oT := iT xor jU

This program is essentially the same as program “o :=
t xor u” from §I. We previously analyzed program (14)
and determined that it exhibits 1 bit of channel suppression
if Tin and Uin are uniform distributions on {0, 1}. We can
also analyze the program for contamination: jT is supplied
by a user, and oT is observed by that same user. Calculating
C yields a contamination of 1 bit, indicating that the user
learns all the (untrusted) information in iU. So this program
exhibits both contamination and channel suppression, as we
argued in §I.

You might wonder how a program with a one-bit output
can exhibit both 1 bit of contamination and 1 bit of channel
suppression. The answer is that contamination concerns in-
jection of information (here 1 bit of untrusted information is
injected), whereas suppression concerns loss of information
(here 1 bit of trusted information is lost).

Also, recall program (13), restated here:

oT := iT xor rnd(1)

This program is essentially the same as program “o :=
t xor n” from §I. We previously determined that pro-
gram (13) exhibits 1 bit of channel suppression. Because
there are no untrusted inputs, quantity C of contamination
is 0. So this program exhibits only channel suppression, as
we argued in §I.12

4) Channel suppression and leakage: Recall that leak-
age (7) is the quantity L of information flow from secret
inputs to public outputs. Leakage can be prevented by
employing channel suppression. Consider a declassifier that
accepts trusted, secret inputs and produces trusted, public
outputs. The declassifier’s task is to selectively release
some secret information and suppress the rest. Whatever
information is not leaked by the declassifier ought to have
been suppressed.

That intuition is made formal by the following proposi-
tion. Let s denote a secret input event and let p denote a
public output event. Let I(s) denote the self-information of
event s. Let L1 denote the leakage in a single execution
of the declassifier and be defined as I(s, p); this definition
follows from equation (7) by removing the conditioning
on Pin (since the declassifier has no public inputs) and

12These arguments implicitly assume that random number generator
rnd(·) is trusted. Untrusted generators could also be modeled, but we
don’t pursue that here.

SpecificationSender Receiver
tin tspec

Implementation
Attacker Attacker

Sender Receiver

uin uout

tin timpl

Figure 3. Program suppression model

by removing the expectation over all executions from the
definition of mutual information I.

Proposition 1. L1 + CS1 = I(s).

So for a given probability distribution of high inputs,
leakage plus channel suppression is a constant. Confiden-
tiality is obtained by eroding integrity, and vice versa.
Any security condition for declassifiers—we discuss some
in §V—that requires a minimum amount of confidentiality
thereby restricts the maximum amount of integrity. And any
utility condition that requires a minimum amount of integrity
thereby restricts the maximum amount of confidentiality.

B. Program Suppression

We now generalize the idea of suppression from com-
munication channels to program correctness. Consider a
specification program, depicted in figure 3: the specification
receives a trusted input tin from the sender and produces a
correct, trusted output tspec for the receiver. This idealized
program does not interact with the attacker. But in the
real world, an implementation program that does interact
with the attacker would be used to realize the specifica-
tion. The implementation receives trusted input tin from
the sender and untrusted input uin from the attacker; the
implementation then produces untrusted output uout for the
attacker and trusted output timpl for the receiver. A correct
implementation would always produce the correct tspec—
that is, timpl would equal tspec . Incorrect implementations
thus produce incorrect outputs, in part because they enable
the attacker to influence the output.

In this model, the receiver observes timpl but is interested
in tspec . So the extent to which timpl informs the receiver
about tspec determines how much integrity the implementa-
tion has with respect to the specification. We can quantify
this extent with information theory: program transmission is
the amount of information that can be learned about tspec
by observing timpl . Likewise, program suppression is the
amount of information that timpl fails to convey about tspec .

Definition: Program suppression is the amount of informa-
tion a receiver fails to learn about the specification’s trusted
output by observing the implementation’s trusted output.
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Let Tspec be the distribution on the specification’s trusted
outputs, and let Timpl be the distribution on the implementa-
tion’s trusted outputs. These output distributions depend on
trusted input distribution Tin , untrusted input distribution
Uin (only for Timpl ), and on the programs’ semantics.
Moreover, Tspec and Timpl are based on the same underlying
trusted input—that is, the specification and the implemen-
tation must be executed with the same trusted input. We
require Tspec to be a (deterministic) function of its input:

H(Tspec |Tin) = 0. (18)

The definitions of program transmission and program
suppression in single executions (PT1 and PS1) and in
expectation (PT and PS) are then as follows:

PT1 , I(tspec , timpl), (19)

PS1 , I(tspec |timpl), (20)

PT , I(Tspec , Timpl), (21)

PS , H(Tspec |Timpl). (22)

The rationale for these definitions remains unchanged from
our development of channel transmission and suppression.
Note that the attacker’s influence is accounted for because
Timpl can depend on Uin .

Channel transmission and suppression can now be seen
as instances of program transmission and suppression for
the echo specification, which stipulates that tspec equal tin .
(This specification is deterministic and therefore satisfies
equation (18).) In §III-A, the output of the channel is called
tout , hence timpl equals tout . Given these equalities, we
have that Tspec = Tin and Timpl = Tout . Making these
substitutions in the above definitions yields the definitions
of channel transmission and channel suppression in single
executions (CT1 and CS1) and in expectation (CT and CS).

Before turning to more compelling examples, we consider
the following specification as a corner case:

oT := 42

This specification represents a constant function: Tspec is
the distribution assigning probability 1 to output 42. So
quantity PS of program suppression is 0 bits, because the
entropy of Tspec is 0 regardless of whether it is conditioned
on Timpl , hence regardless of the implementation. Therefore
no implementation of a constant function exhibits program
suppression.

1) Examples of program suppression: Consider the fol-
lowing specification SumSpec for computing the sum of
array a, which contains m elements indexed from 0 to m−1:

SumSpec : for (i = 0; i < m; i++)

{ s := s+a[i]; }

(Assume throughout that s is initially 0.)

Programmers frequently introduce off-by-one errors into
loop guards. Implementation UnderSum exhibits such an
error by omitting array element a[0]:

UnderSum : for (i = 1; i < m; i++)

{ s := s+a[i]; }

Conversely, implementation OverSum adds a[m], which is
not an element of a:

OverSum : for (i = 0; i <= m; i++)

{ s := s+a[i]; }

Suppose that each array element a[i] is identically,
independently distributed according to a binomial distribu-
tion with parameters n and p. Let Bin(n, p) denote this
distribution.13 Also suppose that the value found in a[m]
is uniformly distributed on integer interval [0, 2j − 1]; let
Unif (0, 2j − 1) denote this distribution. We consider ele-
ments a[0]..a[m-1] to be properly initialized according
to their binomial distribution and therefore to be trusted. But
a[m] is not an element of the array, so it might have been
initialized by the attacker; we therefore consider a[m] to
be untrusted.
UnderSum exhibits the following quantity PSUS of pro-

gram suppression:

PSUS =
∑

s′∈Bin(n,p),

i∈Bin(n(m−1),p)

Pr(s′)Pr(i) log Pr(s′). (23)

(The full calculation of PSUS, as well as the calculations for
equations (24) and (25) below, appears in the accompanying
technical report [19].) So if m = 10, n = 1, and p = 0.5,
then PSUS is 1 bit. This quantity is intuitively sensible:
the implementation omits array element a[0], which is
distributed according to Bin(1, 0.5), and the entropy of that
distribution is 1 bit (because it assigns probability 0.5 to each
of two values, 0 and 1). Moreover, this analysis suggests
that UnderSum always exhibits program suppression equal
to the entropy of the distribution on a[0]:

PS = H(Bin(n, p)). (24)

Indeed, it is straightforward to reduce equation (23) to
equation (24). Hence, UnderSum suppresses exactly the
information about the omitted array element.

13A binomial distribution models the probability of the number of suc-
cesses obtained in a series of n experiments, each of which succeeds with
probability p. We choose this distribution because it enjoys a convenient
summation property—if X ∼ Bin(nx, p) and Y ∼ Bin(ny , p), then
X + Y ∼ Bin(nx + ny , p), where Z ∼ D denotes that random variable
Z is distributed according to distribution D—and because it illustrates that
our theory is not limited to uniform distributions.
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OverSum exhibits a different quantity PSOS of program
suppression:

PSOS =
∑

s∈Bin(mn,p),

i′∈Unif (0,2j−1)

2−j Pr(s) log
2−j Pr(s)
Pr(s + i′)

. (25)

Now if m = 10, n = 1, p = 0.5, and j = 1, then PSOS
is about 0.93 bits. The 1 bit of randomness added by the
attacker through a[m], which is uniformly distributed on
{0, 1}, suppresses nearly 1 bit of information from the sum.
The program suppression is not fully 1 bit because there
are corner-case values that completely determine what the
summands are—for example, if the sum is 0, then all array
elements are 0 and the attacker’s input is 0. As m increases,
PSOS approaches 1, because such corner cases occur with
decreasing probability. So in the limit, the attacker can
exploit memory location a[m] to suppress a single array
element.14

2) Probabilistic specifications: Equation (18) requires
specifications to be deterministic. Consider eliminating that
requirement and allowing probabilistic specifications—for
example, “oT := rnd(1)”. This specification stipulates that
the output must be 0 or 1, and that each output must occur
with probability 1

2 . There is no correct output according to
this specification; instead, there is a correct distribution on
outputs. And program suppression should be the amount
of information the receiver fails to learn about that correct
distribution—rather than about a correct output—by observ-
ing the implementation. When quantifying suppression of
correct outputs, we needed a probability distribution on
outputs to model the receiver’s uncertainty. To quantify
suppression of correct distributions, we would need an extra
level of distributions: a probability distribution on a proba-
bility distribution on outputs. So far, we have modeled only
discrete probability distributions, which have finite support.
But there are infinitely many probability distributions on
outputs, so it seems we would need to upgrade our model
with continuous probability distributions and differential
entropy (the continuous analogue of entropy). We leave this
mathematical upgrade as future work.

3) Duality: Program suppression is the amount of infor-
mation the implementation’s trusted output fails to reveal
about the trusted output that is correct according to the
specification. Applying the Biba duality, the confidential-
ity dual of program suppression would be the amount of
information that the implementation’s public output fails to
reveal about the public output that is correct according to the
specification. For confidentiality, this flow is uninteresting:

14This kind of analysis might be used to provide a mathematical
explanation of why failure-oblivious computing (FOC) [26] is successful at
increasing software robustness. FOC rewrites out-of-bounds array reads to
return strategically-chosen values that enable software to survive memory
errors. Perhaps the choice of values could be understood as minimizing
program suppression; we leave further investigation as future work.

the amount of information that flows—or fails to flow—to
public outputs does not characterize how a program leaks
or hides secret information. So there does not seem to be a
dual to suppression.

Other notions of integrity also lack obvious confidentiality
duals—for example, the Clark–Wilson [4] integrity policy
for commercial organizations, based on well-formed trans-
actions and verification procedures. Apparently, the Biba
duality goes only so far.

4) Suppression vs. availability: If a program (or channel)
suppresses all its input, the receiver gains no information.
It might at first seem as though the program has made
the correct output unavailable, so we might be tempted
to conclude that suppression measures availability rather
than integrity. However, availability is usually concerned
with timely response—not with quality of information—
whereas suppression is concerned with quality, not timeli-
ness. Furthermore, techniques typically employed to prevent
suppression differ from those for improving availability. For
example, error-correcting codes defend against (channel)
suppression, but they do not improve availability—if a
channel goes down (e.g., a wire is cut), a code cannot restore
communication. And replication improves availability but
potentially introduces (program) suppression, because differ-
ent replicas might provide different responses and combining
those responses might yield incorrect output. Hashes and
digital signatures are therefore used in conjunction with
replication to increase integrity by ensuring correct output.

Complete absence of information could be viewed as
complete confidentiality, complete loss of integrity, or com-
plete unavailability. Thus some quantitative relaxation of
“complete absence” could yield quantitative characteriza-
tions of confidentiality, integrity, or availability. So there
might be some interesting relationships—perhaps even new
dualities—still to be found.

IV. INTEGRITY AND BELIEFS

In our models of contamination and suppression, inputs
are chosen according to probability distributions. For ex-
ample, the user assumes that untrusted inputs are chosen
according to distribution Uin in our model of contamina-
tion. But the user could be wrong—the inputs could be
chosen according to a different distribution; a calculation
of information flow would then need to incorporate both
distributions.

Clarkson et al. [16], [27] show how to quantify leakage
from secret inputs to public outputs when attackers have
(possibly incorrect) beliefs about the inputs. And since
leakage is dual to contamination, that belief-based approach
ought to work for quantifying contamination. We show that
it does, next, as well as adapt it to suppression. For both
contamination and suppression, the belief-based approach
turns out to generalize the information-theoretic approach
used so far in this paper.
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A. Contamination and Beliefs

Define a belief to be a probability distribution of untrusted
inputs. The user has a prebelief Uin about untrusted input
event uin . Recall that uin is unobservable by the user. The
user instead observes the trusted input and output, enabling
the user to refine Uin to a postbelief U ′in about uin .

Unless the user’s prebelief assigns probability 1 to uin , the
prebelief is inaccurate. To quantify inaccuracy, we stipulate
a function D such that D(X _ Y ) is the inaccuracy of
belief X about reality Y, where Y is also a distribution.
Intuitively, D(X _ Y ) is the distance from the belief
to reality. In previous work [16], we showed that relative
entropy can successfully instantiate D:

D(X _ Y ) ,
∑

x

Pr(Y = x) log
Pr(Y = x)
Pr(X = x)

. (26)

The right-hand side of this definition is the relative entropy15

between Y and X .
Since reality is, in our model of contamination, always a

distribution that assigns probability 1 to event uin , we can
simplify our notation and definition. Let D(X _ x) be the
inaccuracy of belief X about event x:

D(X _ x) , − log Pr(X = x). (27)

Equation (27) follows from (26) by setting Y to be a distri-
bution that assigns probability 1 to event x. This simplified
definition is equivalent to self-information—that is,

D(X _ x) = I(x), (28)

where the probability of x in the calculation of self-
information I(x) is specified by X .

Quantity CB of contamination of beliefs is the improve-
ment in accuracy of the user’s belief, because the more
accurate the belief becomes, the more untrusted information
the user has learned:

CB , D(Uin _ uin)−D(U ′in _ uin). (29)

In previous work [16], we defined an experiment protocol for
calculating a postbelief from a prebelief and a probabilistic
program semantics. That protocol turns out to be equivalent
to calculating U ′in according to equation (4): U ′in equals
Uin conditioned on tin and tout . Furthermore, the quantity
of contamination according to CB equals the quantity of
contamination according to C1 (1).

Theorem 1. CB = C1.

Thus belief-based quantification is equivalent to mutual in-
formation-based quantification on single executions.

15The traditional notation for the relative entropy between Y and X
is D(Y ‖ X), but we use notation D(X _ Y ) to emphasize the
asymmetry between the two distributions. Also, we abuse notation by
treating distributions as random variables in the probability terms.

Moreover, define belief Uin to be correct if the attacker
chooses uin by sampling user prebelief Uin—that is, if the
user is correct about how untrusted inputs are chosen. Then
applying the expectation operator to both sides of theorem 1,
we have that the expected quantity of contamination of
beliefs equals the expected quantity of contamination ac-
cording to C (6).

Corollary 1. Uin is correct implies E[CB ] = C.

Thus belief-based quantification generalizes mutual infor-
mation-based quantification.

Corollary 1 can also be understood in terms of leakage by
applying the duality of contamination C and leakage L (7).
If the attacker’s distribution Sin on secret inputs is correct,
the expected quantity of leakage according to the belief-
based approach equals the quantity of leakage according
to the mutual information-based approach. So corollary 1
also establishes how belief-based and mutual information-
based measures for confidentiality are related: the mutual
information measure is a special case of the belief measure.

B. Suppression and Beliefs

In our model of contamination, the user holds beliefs
about untrusted inputs. To model channel suppression, we
replaced the user with a sender and a receiver. So to
model channel suppression with beliefs, we now regard the
receiver as the agent who holds beliefs. The receiver’s joint
prebelief (Tin , Uin) characterizes the receiver’s uncertainty
about trusted input tin supplied by the sender and untrusted
input uin supplied by the attacker. And the receiver’s post-
belief T ′in characterizes the receiver’s uncertainty about the
untrusted input after observing the trusted output, so T ′in
equals Tin conditioned on tout . The improvement in the
accuracy of the receiver’s belief is the quantity CTB of
belief-based channel transmission:

CTB , D(Tin _ tin)−D(T ′in _ tin). (30)

Term D(T ′in _ tin) characterizes the remaining error in the
receiver’s postbelief, hence the quantity of information that
the receiver did not learn about tin . So D(T ′in _ tin) is the
quantity CSB of belief-based channel suppression:

CSB , D(T ′in _ tin). (31)

Unsurprisingly, the following results—corresponding to
those we obtained for contamination—hold. For the corol-
lary, we extend the definition of correct prebelief to mean
that (Tin , Uin) is correct if inputs tin and uin are chosen by
the sender and attacker by sampling distributions Tin and
Uin , respectively.

Theorem 2. CTB = CT1 and CSB = CS1.

Corollary 2. (Tin , Uin) is correct implies E[CTB ] = CT
and E[CSB ] = CS .
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Thus the belief-based definition of channel suppression
generalizes the mutual information-based definition.

Likewise, we can generalize belief-based channel sup-
pression and transmission to program suppression and trans-
mission. Let T ′spec = Tspec |timpl . The following definitions
of belief-based program transmission PTB and belief-based
program suppression PSB are straightforward generaliza-
tions of equations (30) and (31):

PTB , D(Tspec _ tspec)−D(T ′spec _ tspec), (32)

PSB , D(T ′spec _ tspec). (33)

We obtain the obvious result:

Corollary 3. PTB = PT1 and PSB = PS1. Further,
(Tin , Uin) is correct implies E[PTB ] = PT and E[PSB ] =
PS .

So belief-based definitions again generalize mutual infor-
mation-based definitions.

V. CASE STUDY: DATABASE PRIVACY

Databases that contain information about individuals
sometimes must respond to queries in a way that protects
the privacy of those individuals. Such databases often will
employ an anonymizer to suppress information about indi-
viduals. We model the anonymizer as a program that receives
two inputs, as depicted in figure 4. The first input is the
user’s query. The second input is a response computed by the
database with the user’s query. Both inputs are trusted by the
anonymizer and by the user. The response contains informa-
tion from the database—perhaps even its entire contents—so
the response is secret. The query, however, is public because
it contains no sensitive information about individuals. The
anonymizer produces an anonymized response as output.16

The anonymized response is trusted by the user and is public,
because it (presumably) has been anonymized. Although the
query and responses might involve statistics (e.g., sums or
averages) computed from individuals’ information, we do
not restrict our consideration to any particular statistics. Our
model is agnostic about the domains of queries and data.

The user attempts to learn secret information about
individuals through queries. The anonymizer should leak
some information to the user; otherwise, interacting with
it would be pointless. And the anonymizer acts as a noisy

16The anonymizer might also produce some output about the anonymi-
zation it just performed, and this output might be stored in the database
and used during future anonymizations.

communication channel, where the database is the sender
and the user is the receiver.17 The anonymizer suppresses
some information from this channel’s outputs to protect
privacy. By proposition 1, the amount of leakage plus the
amount of channel suppression is a constant that depends
on the distribution of database content. This is sensible—
whatever the anonymizer doesn’t suppress, it leaks.

The quantitative frameworks we have developed for in-
tegrity and confidentiality yield a nuanced characterization
of database privacy. We demonstrate this by analyzing
two popular security conditions, k-anonymity [28] and `-
diversity [29]. For each, we are able to offer an information-
theoretic characterization of the security condition.

A. k-anonymity

Sweeney [28] proposes k-anonymity, a security condition
for anonymizers, which requires every individual to be
anonymous within some set (of individuals) of size at least
k. For example, if Alice was born Nov. 26, 1865, and
if gender and birth date are both published, then at least
k − 1 other females born that day must be included in the
published data. If the original database does not contain at
least that many individuals, the data must be changed in
some way to satisfy k-anonymity. Sweeney proposes gen-
eralization, which hierarchically replaces attributes values
with less specific values. For example, Alice’s birth date
might be replaced by Nov. 1865, by 1865, or even by
18**. Generalization improves confidentiality by obscuring
identities, but it diminishes the information conveyed—
that is, generalization corrupts integrity. That tradeoff is
unsurprising in light of proposition 1. Sweeney quantifies
the integrity of generalized data with a precision metric that
is based on the generalization hierarchy and the domains
used in it.

Adapting Sweeney’s insight to information flow, we could
imagine requiring that the public output of a program
corresponds to at least k possible secret inputs. This re-
quirement would make any particular input be anonymous
within a set of size k. We have the tools to analyze how
generalization affects our notions of leakage and channel
suppression.18 As an example, consider generalization of
birth dates. Assume that birth dates are uniformly distributed
within a given year—for example, 1865.19 Then, according
to our definitions, a program that outputs the entire input
date leaks about 8.5 bits and suppresses 0 bits; a program
that outputs just the month and year leaks about 3.6 bits and
suppresses about 4.9 bits; and a program that outputs just
the year leaks 0 bits and suppresses about 8.5 bits.

17Alternatively, we could use program suppression to model anonymizers
instead of channel suppression. The anonymizer would be an implemen-
tation program; the specification would be the query evaluator. Channel
suppression is simpler—it does not require modeling the query evaluator.

18Sweeney defines “suppression” differently than we do; she uses it to
mean the complete removal of an individual’s information from the output.

19Birth dates are, in reality, probably not uniformly distributed [30].
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Moreover, leakage and channel suppression enable an
information-theoretic understanding of generalization. Chan-
nel suppression quantifies how much information is lost
because of generalization, whereas Sweeney’s precision met-
ric has no obvious information-theoretic interpretation. And
leakage quantifies how much information is released despite
generalization, whereas k-anonymity makes no guarantees
on how much information might be leaked. For example,
suppose that published data includes a medical diagnosis
and a favorite pet. If it is known that Alice’s favorite pet is
a cat and that the rest of the individuals in the population are
highly unlikely to have a cat as a favorite pet, then Alice’s
medical diagnosis could be inferred with high probability.
Thus information about Alice would be leaked despite k-
anonymity. As another example, if a program’s output could
have been caused by any one of k possible inputs, but
one of those inputs is much more probable than the rest,
then information about the input would be leaked despite
k-anonymity. These kinds of leakage—made possible by
the attacker’s background knowledge—were discovered by
Machanavajjhala et al. [29], who invented a new criterion,
`-diversity. We turn to that, next.

B. `-diversity

The principle of `-diversity [29] is that published data
should not only make every individual’s sensitive infor-
mation appear to have at least ` possible values, but that
each of those values should have roughly equal probability.
This principle blunts background knowledge attacks, which
depend on some sensitive values having significantly higher
probability than the rest.

Machanavajjhala et al. [29] give an instantiation of the
`-diversity principle based on entropy, as follows. Define a
block to be a set of tuples in which each tuple corresponds
to an individual and in which every individual has the same
values for non-sensitive attributes. For example, a block
might contain all the tuples corresponding to individuals
whose birth date is 18** and whose favorite pet is a cat.
However, individuals in the block may (indeed, should)
have different values for their sensitive attributes. We can
construct an empirical probability distribution of sensitive
attributes in the block by taking their relative frequencies—
for example, given the following block, the distribution
would assign probability 0.5 to cancer and 0.25 to both heart
disease and influenza:

Non-sensitive Sensitive
Birth date Favorite pet Diagnosis

18** cat cancer
18** cat cancer
18** cat heart disease
18** cat influenza

For each such probability distribution B constructed from
a block of published data, entropy `-diversity requires that

H(B) ≥ log ` holds, where H(B) denotes the entropy of
distribution B.20 Applying this definition, we have that the
block above is 1.5-diverse. Notice that it is not 2-diverse
because the two most frequent sensitive values (either cancer
and heart disease, or cancer and influenza) do not occur with
roughly equal probability—cancer is twice as likely as the
other diagnoses.

More generally, consider any block with distribution B
that satisfies entropy `-diversity. The entropy of a uniform
distribution of ` events is log `. So if H(B) ≥ log `, we have
that B is at least as uncertain as a distribution of sensitive
information in which the information has at least ` possible
values, all of which are equally likely. Hence entropy `-
diversity is an instantiation of the `-diversity principle.

We now recast entropy `-diversity in terms of information
flow. In the example above, B is the distribution on the
diagnosis of an arbitrary patient that results from observing
the block. More generally, B is the distribution on trusted
(secret) inputs that results from observing a block, which
is a trusted (public) output, under the assumption that the
observer’s initial distribution Tin on inputs is uniform. (Were
it not uniform, B would be a function of the block’s
empirical distribution and the observer’s initial distribution.)
Hence, B = Tin |tout . And since H(B) ≥ log `, we have
that H(Tin |tout) ≥ log ` for any tout produced by the
anonymizer. We can use this fact to obtain a bound on the
anonymizer’s channel suppression:

CS = 〈equation (12)〉
H(Tin |Tout)

= 〈H(X|Y ) = Ey∈Y [H(X|y)]〉
Etout∈Tout

[H(Tin |tout)]
≥ 〈fact above〉

Etout∈Tout
[log `]

= 〈expectation of constant〉
log `.

So we have that CS ≥ log `. As a straightforward conse-
quence of its definition, entropy `-diversity therefore en-
forces a bound on channel suppression.

Interpreting that bound, suppose that an individual is in
the block from which B was constructed, and suppose that
Tin is uniform—meaning that the individual is equally likely
to have any value for his sensitive attributes. Then B yields
the probability distribution on that individual’s sensitive
attributes that results from observing the published block.
Entropy `-diversity requires at least log ` bits of uncertainty
in that distribution. So at least log ` bits of information are
suppressed about the individual’s sensitive attributes.

However, entropy `-diversity does not directly place a
bound on the amount of information that may be transmitted;

20The definition of entropy `-diversity originates with Øhrn and Ohno-
Machado [31].
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beyond the log ` bits that are suppressed, there might be
many bits that are transmitted about an individual. For
example, there might be
• a lot of information about the individual (e.g., an entire

DNA sequence) already present in the input, little of
which is suppressed; or

• a lot of background knowledge about the individual
already possessed by the user, enabling inference of a
lot of information from the output.

To measure the utility of published data—that is, how
useful the data is for studying the characteristics of a
population—Machanavajjhala et al. [29] and Kifer and
Gehrke [32] use an information-theoretic metric called
Kullback-Leibler divergence. This metric is another name for
relative entropy D (26). Let B be an empirical probability
distribution of sensitive attributes, as constructed above from
anonymized data.21 And let R be an empirical distribution
similarly constructed from the original (non-anonymous)
data. Their utility measure is the relative entropy of B to
R—that is, D(B _ R). Notice that the best possible utility
is 0, meaning that B and R are the same distribution, and
that the higher the utility is, the less the distributions are
alike. So we call this metric anti-utility.

Again recasting in terms of information flow, note that
anti-utility is the distance between two distributions: an em-
pirical distribution of trusted inputs, after observing trusted
outputs; and an empirical distribution of trusted inputs. Were
we to ignore the “empirical” part of that characterization, we
could say that anti-utility is D(Tin |tout _ Tin), which is
the expectation of D(Tin |tout _ tin) with respect to tin .
That latter quantity is CSB (31), because T ′in = Tin |tout .
And by corollary 2, expected belief-based channel sup-
pression E[CSB ] is equal to information-theoretic channel
suppression CS . So anti-utility would be the quantity of
channel suppression if we used real, instead of empirical,
distributions.22 This equivalence is sensible, because the less
suppression data suffers, the more useful it is.

VI. RELATED WORK

Research on quantification of information flow began with
analysis of covert channels, and progress has been made
from theoretical definitions to automated analyses [33]–[37].
Quantification of integrity and corruption is a relatively new
line of research.

Newsome, McCamant, and Song [17] implement a dy-
namic analysis that automatically quantifies attacker influ-
ence in real-world programs. They quantify the influence an
attacker can exert over the execution of a program as the
logarithm of the size of the set of possible outputs. This

21We simplify their definition here. They define B as the maximum
entropy distribution with respect to empirical distributions calculated from
several published data sets.

22Definitions of anti-utility [29], [32] use empirical distributions because
they deal with concrete databases and anonymizations.

quantity is the same as our contamination C1 in a single
execution, assuming that programs are deterministic and that
all inputs are either under the control of the attacker or are
fixed constants. But our definition of C1 allows probabilistic
programs, trusted inputs that are not under the control of the
attacker, and arbitrary distributions on inputs and outputs.

Heusser and Malacaria [38] quantify the information
leaked by a database query. They model database queries
as programs, which enables application of their general pur-
pose, automated, static analysis of leakage for C programs.
Their work does not address integrity or relate information
flow to existing database-privacy security conditions.

Biba [14] defines the integrity problem as the formulation
of “policies and mechanisms that provide a subsystem with
the isolation necessary for protection from subversion.” He
formulates several such policies, one of which (termed
the “strict integrity policy”) is dual to the Bell–LaPadula
confidentiality policy [39]. But since Biba’s motivating
concern was guaranteeing that systems perform as their
designers intended, correctness is also a critical piece of
the integrity puzzle. Our program suppression measure PS
addresses correctness; perhaps other quantitative notions of
correctness, such as software testing metrics, could also be
understood as addressing quantitative integrity.

Information-flow integrity policies have sometimes re-
ceived less attention than their confidentiality counterparts.
For example, early versions of Jif [40] (then called JFlow)
did not include integrity policies, and Flow Caml [41] does
not distinguish confidentiality from integrity but instead uses
an arbitrary lattice of security levels. But work on securing
information flows in distributed systems programmed in
Jif led to an appreciation for the role of information-
flow integrity policies, because they were needed to “pro-
tect security-critical information from damage by subverted
hosts” [42]—an instance of Biba’s integrity problem. Se-
curing information flows in the presence of declassification
(when, e.g., secret information is reclassified as public) also
turned out to require integrity policies, so that attackers
could not gain control over what information is declassi-
fied [43]. So integrity cannot be easily dismissed, even when
confidentiality is the primary concern.

Several recent systems use integrity policies in inter-
esting ways. Jif-derived languages and systems [44]–[46]
for building secure distributed applications incorporate in-
tegrity policies, enabling principals to specify fine-grained
requirements on how their information may be affected by
other principals. These policies drive automated partitioning
of applications, in which computations can be assigned
to principals who are sufficiently trusted to perform the
computations. When no such principals exist, computations
can be replicated and their results validated against each
other to boost integrity. Flume [47]—a system that inte-
grates information flow with operating system abstractions
such as processes, pipes, and sockets—also incorporates
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integrity policies, preventing (e.g.) untrusted dynamically-
loaded code from affecting information in the process
that loads it. Airavat [48] integrates information flow with
MapReduce [49] and differential privacy [50], providing
confidentiality and integrity for MapReduce computations
and automatically declassifying computation results if they
do not violate differential privacy.

VII. CONCLUDING REMARKS

When we began this work, we thought we could simply
apply Biba’s confidentiality–integrity duality to obtain a
quantitative model of integrity from previous work on quan-
titative confidentiality. We soon discovered that the result-
ing model, which we named contamination, was not same
as the classical information-theoretic model of quantitative
integrity, which we named channel suppression. We later
discovered that channel suppression could be generalized to
characterize program correctness, yielding another kind of
quantitative integrity.

Are there other kinds of (quantitative) integrity waiting
to be discovered? We suspect so. We have not dealt, for
example, with the Clark–Wilson [4] integrity policy, which
stipulates the use of trusted procedures to modify data. Nor
have we dealt with database integrity constraints, which
stipulate conditions that database records must satisfy.

We cannot even attempt to prove that contamination and
suppression are sufficient to express all integrity properties,
because we lack a formal definition of integrity. But we can
gain some insight by reviewing the information-flow model
we have used in this paper, depicted in figure 5. The solid
arrows in this figure represent two kinds of integrity that
we identified, contamination (flow from uin to tout ) and
channel suppression (attenuation of flow from tin to tout ).
The dashed arrows represent flows that are uninteresting
from our security perspective: it does not matter how much
trusted or untrusted information flows to untrusted outputs.
Since these four arrows represent all possible flows, we
conclude that contamination and channel suppression are the
only interesting integrity properties in this information-flow
model. Other kinds of integrity must exist outside it.

Finally, our work exemplifies how measurement can drive
research, even in computer security. In an effort to measure
integrity, we came to disentangle suppression from contam-
ination. We also bridged a gap between database privacy
and quantitative information-flow security. Lord Kelvin had
it right:

When you can measure what you are speaking about,
and express it in numbers, you know something about
it; but when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meagre
[sic] and unsatisfactory kind; it may be the beginning
of knowledge, but you have scarcely in your thoughts
advanced to the state of Science.

—William Thomson, 1st Baron Kelvin23
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