
A Semi-Supervised Learning Approach To Differential Privacy

Geetha Jagannathan

Department of Computer Science
George Washington University

Washington, D.C.
geetha@geeiscool.com

Claire Monteleoni

Department of Computer Science
George Washington University

Washington, D.C.
cmontel@gwu.edu

Krishnan Pillaipakkamnatt

Department of Computer Science
Hofstra University
Hempstead, N.Y.

csckzp@hofstra.edu

Abstract—Motivated by the semi-supervised model in the
data mining literature, we propose a model for differentially-
private learning in which private data is augmented by public
data to achieve better accuracy. Our main result is a differ-
entially private classifier with significantly improved accuracy
compared to previous work. We experimentally demonstrate
that such a classifier produces good prediction accuracies
even in those situations where the amount of private data is
fairly limited. This expands the range of useful applications
of differential privacy since typical results in the differential
privacy model require large private data sets to obtain good
accuracy.

I. INTRODUCTION

Databases that contain sensitive information about in-

dividuals need to be safeguarded from malicious access

that can compromise privacy. Typical attacks assumed an

adversary who can use public information to gain insight

into a target individual’s information stored in the database.

Differential privacy [8] offers protection against such attacks

irrespective of any auxiliary information that may be avail-

able to an adversary trying to breach privacy. In this work,

we consider auxiliary information (i.e. public data) from a

different perpective. We ask the question: Can non-private

data be used to “boost” the accuracy of differentially-private

algorithms? We answer this question in the affirmative.

Motivated by the well known semi-supervised model in

machine learning literature, we propose a learning model

that uses both private and non-private data. We design a

data mining algorithm where non-private data is used in

conjunction with a small amount of private data to increase

the accuracy of differentially-private learners.

Semi-Supervised Learning: In the semi-supervised

model [5] of machine learning, a learner has access to both

labeled and unlabeled data. Usually, the learner has only a

small amount of labeled data available, while the amount of

unlabeled data is much larger. This imbalance in the amounts

of data is due to the fact that labeling training instances can

be an expensive, time-consuming and difficult process that

requires human domain experts. Unlabeled data is usually

much easier to acquire. In the model of semi-supervised

classification the goal is to use both labeled and unlabeled

data to create a classifier that is better than one created using

the labeled data alone. It has been shown in the machine

learning literature that in many cases, unlabeled data used

in conjunction with a small amount of labeled data can lead

to an increase in the accuracy of classifiers produced by the

learning algorithms.

Private and Non-private Data: Prior work in the differ-

ential privacy model has assumed that data being analyzed

is entirely private. However, this is not always a realistic

presumption. Consider the two following scenarios:

1) An organization surveys young customers at a clothing

store about their purchasing habits. Individuals for

whom privacy is a substantial concern may insist that

the organization use their data only in ways that does

not reveal anything about them. On the other hand

some individuals may be willing to give up their

data privacy in exchange for some compensation. The

survey organization would then have a database that

contains both private as well as non-private data. It

would be reasonable to assume that the presence of

non-private data can improve the quality of the data

analysis they would like to perform.

2) A confidential survey about residents in a community

may include information about whether or not each

respondent in the database has an annual salary of

at least $100,000. A public database (such as a voter

registration database) about the same community will

not include such confidential information. An organi-

zation that wants to mine the private database would

perhaps benefit from the public database, even though

it is missing an important confidential attribute.

Our Contributions: The main goal of this paper is to

provide a learning model that addresses the above mentioned

scenarios. We consider the problem of improving the accu-

racy of a differentially private classifier using non-private

data when only a small amount of private data is available.

One naive approach is to consider all the non-private data as

additional private data and construct a differentially private

classifier on the combined data. In doing so, the classifier

pays the cost of privacy even when it not required to do

so for non-private data. This can result in lowered accuracy.

In contrast, our technique initially constructs a differentially

private classifier from the private data and then uses the non-

2013 IEEE 13th International Conference on Data Mining Workshops

978-0-7695-5109-8/13 $31.00 © 2013 IEEE

DOI 10.1109/ICDMW.2013.131

841

2013 IEEE 13th International Conference on Data Mining Workshops

978-0-7695-5109-8/13 $31.00 © 2013 IEEE

DOI 10.1109/ICDMW.2013.131

841

private data as a post-processing step to “boost” the accuracy

of the initial classifier.

Our differentially private classifier is a non-trivial ex-

tension of the differentially private random decision tree

classifier [13]. However, random decision trees were not

designed to deal with unlabeled instances. We extend the

random decision tree idea to exploit the availability of (non-

private) unlabeled data. We use the unlabeled instances in

two ways. First, we use them to control the partitioning

of the instance space so that denser regions of the space

are partitioned more finely than sparse regions. Second,

we use the unlabeled examples to “propagate” the labels

from the labeled instances to larger regions of the instance

space. Together, these techniques boost the utility of the

differentially private classifier without lowering privacy. We

experimentally demonstrate that our claims holds even on

small and moderate sized datasets. Our goal is to boost the

accuracy of the classifier, in contrast to the differentially

private boosting algorithm [9] that boosts the accuracy of a

class of real valued queries.

We begin in Section II by describing related work. In

Section III, we describe our model for differentially-private

learning. In Section IV we describe our new differentially

private classifier. In Section V, we present the results of our

experimental analysis of our classifier on real world data.

II. RELATED WORK

The model of differential privacy introduced by Dwork et

al. [8] offers strong privacy guarantees for the analysis of

a private data set. Much of this work is surveyed in [7].

Prior work in differential privacy also includes privacy-

preserving learning algorithms in the SuLQ framework [2].

Blum et al. [3] gave a computationally inefficient way of

constructing a synthetic database useful in any concept class

with polynomial VC-dimension. Recently, Mohammed et

al. [18] gave a differentially-private anonymization algorithm

based on the generalization technique. Generalization re-

places a specific value with a more general value to make the

information less precise. Jagannathan et al. [13] presented

a differentially private classifier based on random decision

trees. They heuristically showed that their algorithm achieves

good accuracy even for small datasets. Our work in this

paper can be considered to be a non-trivial extension of that

result to our new learning model.

Friedman and Schuster [11] presented a differentially

private ID3 algorithm that gives better accuracies than the

straightforward construction of a differentially private ID3.

However when tested on real world data sets their algorithm

provided good accuracies only on large or moderate-sized

datasets. Lee and Clifton [16] gave a new formulation

called differential identifiability. This framework provides

the strong privacy guarantees of differential privacy but

also lets the privacy makers set the parameters based on

the established privacy concept of individual identifiabil-

ity. Karwa and Slavkovic [15] presented a differentially

private algorithm that releases a graphical degree partition

of a graph. Recently, Jain and Thakurta [14] addressed

the problem of differentially private learning where the

training features are accessed only through a kernel function.

In [12], the authors preprocessed the counts by grouping and

sampling them. This process reduced the Laplacian noise

added to the counts.

III. OUR MODEL

Let Dpriv denote the database owned by the curator for

which privacy needs to be preserved (the private subset). We

also assume that the curator has access to a dataset Dnpriv

for which privacy need not be preserved (the non-private
subset). We use the term “non-private” instead of “public”

because we intend to convey that privacy is not required

for Dnpriv even though that dataset may not be publicly

available.

Let D = {D1, . . . ,Dk} denote the set of domains, each

of which could be categorical or numeric. Let D = Dpriv ∪
Dnpriv denote the database owned by the curator. Dpriv

consists of m rows denoted as {x1, x2, . . . , xm}, where each

xi ∈ D′
1×. . .×D′

s whereD′
1, . . . ,D′

s ∈ D. Similarly, Dnpriv

consists of � rows denoted as {z1, z2, . . . , z�}, where each

zi ∈ D′′
1 × . . .×D′′

t where D′′
1 , . . . ,D

′′
t ∈ D.

Extending [8] to the new model defined above, two

databases D1 and D2 differ in at most one element if the

private subset of one is a proper subset of the private subset

of other and the larger database just contains one additional

row. D1 and D2 are then said to be neighboring databases.

Since differential privacy needs to be preserved only for

the dataset Dpriv , the notion of neighboring datasets applies

only to Dpriv and not to Dnpriv.

Definition 1 ([8]): A randomized mechanismM satisfies

ε-differential privacy if for all databases D1 and D2 dif-

fering on at most one element, and all S ⊆ Range(M),

Pr[M(D1) ∈ S] ≤ exp(ε) ∗ Pr[M(D2) ∈ S]. The

probability is taken with respect to the randomized algorithm

M.

Let f : X → Rd, where X is the set of databases. Dwork

et al. [8] gave a technique for a mechanismM that computes

the function f to achieve differential privacy. This is done

by adding a noise proportional to the sensitivity of f , drawn

from a suitably chosen distribution, to the output of f (D),

where D ∈ X .

Definition 2 ([8]): The global sensitivity of a function f
is the smallest number S(f) such that for all D1 and D2

which differ on at most one element, ‖ f (D1)− f (D2) ‖1≤
S(f).

Let Lap(λ) stand for the Laplacian distribution with mean

0 and standard deviation
√
2λ. The following theorems are

proven in [8], [17].

842842

Theorem 1 ([8]): For all functions f , the mechanism that

outputs f (D)+ (Y1, . . . , Yd) achieves ε-differential privacy.

Here Yi are drawn i.i.d from Lap(S(f)/ε).

This mechanism is referred to as the Laplace mechanism.

Smaller values of ε require that more noise be added when

query results are returned.

Theorem 2 ([17]): The sequential application of mecha-

nisms Mi, each giving εi-differential privacy gives
∑

i εi-
differential privacy.

Our model, as described, is fairly general in that either

or both of Dpriv and Dnpriv could be labeled or unlabeled.

However, in the context of the algorithm presented in this

paper, Dpriv is assumed to be labeled data while Dnpriv

is unlabeled data. Also, a single row in two neighboring

databases could differ in the example, the label or both. Our

algorithm also works for multi-class labels.

IV. A DIFFERENTIALLY PRIVATE SEMI-SUPERVISED

CLASSIFIER

In this section, we present our new differentially private

classifier in the learning model described in Section III. Our

classifier (RDT# Classifier), based on the random decision

tree classifier [10] reduces to the random decision tree

algorithm in [13] when restricted to labeled data alone. A

random decision tree classifier is an ensemble method that

uses random decision trees as base classifiers.

A. Differentially Private Random Decision Trees

Random decision tree classifiers were originally consid-

ered in the non-private setting for their efficiency in dealing

with large databases [10]. Recently, it has been observed

that they are also useful in the differential privacy model

for small and moderate sized databases [13].

Unlike conventional decision trees, such as those created

by algorithms such as ID3, C4.5 or CART, a random

decision tree is created by choosing test attributes for the

decision tree’s nodes completely at random. The selection

of an attribute for testing at a node does not depend on

any splitting criterion that measures the attribute’s predictive

capabilities. The entire structure of such a random decision

tree can be precomputed using the attribute list alone, before

any training data is examined. This is a key characteristic

of the random decision tree that helps in the construction

of accurate differentially-private classifiers. The training

instances are incorporated into the structure to compute the

distribution of class labels at all the leaves of the tree. The

differentially private random decision tree ensures privacy by

invoking the Laplace mechanism. Since the summary stored

in the leaves of a random decision tree has low sensitivity,

the leaves need only a small amount of Laplacian “noise”

added. A differentially-private random decision tree is an

ensemble of such differentially-private trees. To classify a

test instance the classifier averages the predictions from all

the trees in the ensemble. The private classifier works very

well even for relatively small data sets [13].

The problem for random decision trees fundamentally lies

in the scattering of the training instances into the partitions

of the instance space induced by a random decision tree.

One way to visualize this partitioning is by observing that

if all the attributes in a data set are real valued, a random

decision tree (Figure 1) partitions the space into axis parallel

regions (Figure 2). The partitions correspond to the leaves

of the tree. Whether or not the attributes are real valued, all

training examples that arrive at a leaf of such a tree belong to

the same partition, and hence have similar attribute values.

If the number of partitions induced by a tree is large, each

partition would likely have a small number of rows of the

training data. The noise added to the summary values in each

partition could overwhelm the true counts, thereby leading

to poor utility. On the other hand, if the number of partitions

is small, there would be more rows of the data set in each

partition. However, the discriminatory power of each such

partition (the “purity” of a leaf node) would likely be low

because it spans a large region of the instance space. This

also leads to poor utility. This situation also occurs when the

dataset suffers from sparsity: That is, a small dataset in high-

dimensional space or when there are insufficient examples

to explore the instance space.

B. A semi-supervised learning approach

In the scenario considered in this paper the curator wishes

to create a classifier using a database that has a small set

of private labeled instances, and a relatively larger non-

private set of unlabeled instances. The problem is analogous

to the well-known semi-supervised learning model where

unlabeled examples are used to improve the accuracy of a

classifier that has access to only a small amount of labeled

data. Our differentially private classifier problem uses unla-

beled instances in two ways: (i) to control the partitioning

of the instance space so that denser regions of the space

are partitioned more finely than sparse regions and (ii) to

“propagate” the labels from the labeled instances to larger

regions of the instance space. Together, these techniques

boost the utility of the differentially private classifier without

lowering privacy. In the next section we detail our new

learning algorithm RDT# Classifier.

C. RDT# Classifier

We now describe how to alter the RDT algorithm to

handle unlabeled data and data sparsity. Dense regions in the

instance space can be discovered if there are a large number

of (unlabeled) instances. We extend the random decision tree

idea to exploit the availability of (non-private) unlabeled

data as follows: In each partition of the instance space

induced by the random decision tree, the algorithm uses the

unlabeled instances of that partition to find dense regions

in the instance space. The discovery of such regions allows

843843

x < 0.5

y < 0.3 y < 0.6

x < 0.2 x < 0.3 x < 0.8 x < 0.6

Figure 1. Example of an RDT tree

XX

X

X

X
X

X

X

X

X

Figure 2. Using unlabeled examples

us to build decision trees with approximately the correct

number of leaves. Under the assumption that the (private)

labeled instances have the same distribution as the unlabeled

instances, these labeled instances are not scattered either.

This avoids the problem of having the summary counts in

the leaves of a random decision tree being too small or the

partitions being too big.

In keeping with the spirit of random decision trees, we

use a simple strategy to find dense regions in a partition: We

randomly choose a small subset of the unlabeled instances

in the partition. The instances in this subset serve as the

“centers” of dense regions (Figure 2). The values in the

instance space for which a center c is the closest center form

the neighborhood of c. Note that we do not explicitly seek to

discover the contours of these regions or estimate how many

of them exist. This scattershot approach may place multiple

centers within a single dense region. This is unlikely to pose

a problem since the algorithm builds an ensemble of such

trees.

Having constructed such a tree, the algorithm uses the

(private) labeled instances to find labels for the leaves of

the tree. More precisely, we store with each center c the

distribution (counts) of class labels for the labeled instances

in the neighborhood of c. Adding noise to these counts by

sampling from an appropriate Laplace distribution makes

the tree differentially private. The main algorithm creates a

primary ensemble with a small number of these differentially

private RDT# trees. To label a new instance, the algorithm

finds the label distribution for the instance from each of the

trees in the ensemble, averages them and predicts the class

with the highest frequency.

The algorithm uses this primary ensemble to compute

(pseudo) labels for all the unlabeled examples. The labels

are propagated to a larger portion of the instance space. The

algorithm then creates a large secondary ensemble of RDT#

trees (or classifiers) and populates them with these newly

labeled instances. It returns as the final classifier the union

of the primary and secondary ensembles.

The algorithm to build a single RDT# tree is shown

in Figure 3. The algorithm as presented works only for

categorical attributes, though it can easily be extended to

continuous-valued attributes as in [10]. The algorithm recur-

sively creates the structure of the tree (CreateTree). When

a leaf node of the tree is created, it selects at random the

centers for the dense regions within it. The number of centers

is proportional to the fraction of the unlabeled instances that

arrive at that leaf.

Next, the algorithm incorporates the labeled examples

into the tree (AddLabeled, AddInstance), “filtering” each

instance through the tree to its leaves. Each center c in the

leaves of the tree holds T counters, αc[1], . . . , αc[T], where

T is the number of possible labels for training instances.

The running time of the algorithm is linear in the size

of the database. The RDT# Classifier is an ensemble of

RDT#. When a test instance needs to be classified, the

posterior probability is output as the weighted sum of the

the probabilities output from the individual trees (Figure 4).

The main algorithm is listed in Figure 5. It builds a

primary ensemble E1 of p trees. The AddNoise function

makes the tree differentially private by adding noise sampled

from a Laplace distribution. Then, it uses E1 to label all the

instances in the unlabeled set. Next it builds a secondary

ensemble E2 of t trees using this pseudo labeled set. The

output of this algorithm is the union of E1 and E2. Note

844844

that the ensemble E2 is built using non-private data.

Theorem 3: The RDT# Classifier algorithm is ε-
differentially private.

Proof: Let A denote the RDT# Classifier algorithm. Since

the p-sized primary ensemble E1 is the only part of the

algorithm that uses the private instances, it suffices to show

that each tree in E1 is ε′-differentially private, where ε′ =
ε/p. For a RDT# tree R, we denote the vector formed by

concatenating the αc for all centers c of R by λ(R).
Consider a RDT# structure into which no labeled in-

stances have yet been incorporated. Let D1 and D2 be two

databases differing in at most one element of the private

set. Assume that they generate leaf vectors V1 and V2

respectively on the tree (before noise is added). The global

sensitivity for the leaf vector of that tree is 1, because V1

and V2 differs in exactly one component by a value of 1.

We need to show that for any tree R the ratio
P (A(D1)=R)
P (A(D2)=R)

is bounded from above by eε
′
. Since the structure of the ran-

dom decision tree is generated even before the labeled data

is examined, it suffices for us to show that
P (λ(A(D1))=V)
P (λ(A(D2))=V)

is bounded by eε
′
, for any leaf vector V . This immediately

follows from Theorem 1, taken with the facts that the

sensitivity of the noiseless leaf vectors is 1 and the noise

added is Lap(1/ε′).

V. EXPERIMENTS

In this section, we present our experimental results that

show that non-private data can be used to improve the

utility of the differentially private random decision tree

classifier [13], especially when the size of the private data

set is relatively small. We ran experiments to measure the

accuracy of private RDT# ensembles for various values of

the privacy parameter ε. We implemented our algorithms in

Java using the Weka machine learning framework [20].

Experimental Setup: In general, many of the differ-

ential privacy-preserving mechanisms are known to yield

accurate results when they are run in conjunction with

large data sets [6], [4], [11]. Smaller values of the privacy

parameter ε require larger data sets to reach a desired level

of utility. This series of experiments was run with labeled

sets with as few as 140 instances. The smallest value of ε
we used was 0.5. The algorithm continues to gradually lose

utility with further reductions in ε, which is to be expected,

considering the amount of noise being added.

We now explain the two parameters of the algorithm and

the values we used for them. The size of the primary ensem-

ble (p) is the first user-specified parameter. In the non-private

version, increasing the size of the RDT ensemble results in

an increase in the overall accuracy of the classifier, with

the improvements eventually tapering off [10]. However, the

relationship is not quite as straightforward when differential

privacy is involved. Since we need to use the composition

theorem 2 to aggregate the predictions from p trees, the

Algorithm RDT#
Input: Dpriv, the private labeled data set,

Dnpriv, the non-private unlabeled data set,

X , the set of attributes, and

h, the height of the tree.

Output: A RDT# R

R = CreateTree(Dnpriv, |Dnpriv|, X , 0, h)

AddLabeled(R, Dpriv)

return R

Subroutine CreateTree(D ,N ,X ,d,h)

if d = h then
Create a leaf node

num centers =
N CELLS ∗ |D |/N�
Select num centers instances of D at random as dense

region centers for this leaf

return leaf node

else
Randomly choose an attribute F as testing attribute

Create an internal node r with F as the attribute

Assume F has m valid values

Split D on F to give subsets D1, . . . , Dm

for i = 1 to m do
ci = CreateTree(Di,N ,X − {F},d+ 1,h)

Add ci as a child of r
end for
return r

end if

Subroutine AddLabeled(r,D)

for each x in D do
AddInstance(r, x)

end for

Subroutine AddInstance(r,x)

if r is not a leaf node then
Let F be the attribute in r
Let c represent the child of r that corresponds to the

value of F in x
AddInstance(c, x)

else
/* r is a leaf node */
Let t be the label of x
Let c be the region center in r closest to x
Let αc[t] = # of t-labeled rows that reach the region

centered at c
αc[t]← αc[t] + 1

end if

Figure 3. RDT# Algorithm

845845

Algorithm Classify
Input: {R1, . . . ,RN}, an ensemble of RDT# trees,

x, the row to be classified.

Output: Probabilities for all possible labels

For a tree Ri, let �i be the leaf node reached by x
Let αi[t] represent the count for label t in �i

P (t|x) =
N∑
i=1

αi[t]/

(∑
τ

N∑
i=1

αi[τ]

)
return probabilities for all t

Figure 4. Computing the probability for each possible label for a test
instance

Algorithm RDT# Classifier
Input: Dpriv, the private labeled data set,

Dnpriv, the non-private unlabeled data set, and

ε, the privacy parameter.

Output: A RDT# ensemble

Create p RDT# trees for the primary ensemble E1 using

Dpriv and Dnpriv .

for each R in E1 do
AddNoise(R,ε/p).

end for
for each instance x in Dnpriv do
distrib = Classify(E1,x)

Assign x to the class with the highest probability in

distrib.
end for
Create t RDT# trees for the secondary ensemble E2 using

Dnpriv .

return E1 ∪ E2.

Subroutine AddNoise(R,ε)

for each center c in R do
for each i in {1, . . . , T } do
αc[i] = αc[i] + Lap(1/ε)

end for
end for

Figure 5. RDT# Classifier.

privacy parameter for each tree reduces to ε/p. This implies

that our algorithm needs to sample noise from a distribution

whose standard deviation is proportional to p. Since the

labeled dataset is fairly small, the values in the α counters

of the tree can be easily overwhelmed for large values of p.

In [10], Fan et al. suggest that as few as 10 trees suffice.

In [13], the smallest dataset uses 5 trees. We use the same

value 5 for p.

The second parameter is the total number of centers in all

leaves (N CELLS). The implementation of our algorithm

ensures that each leaf of the random decision tree has at

least one center. Ideally one could run a clustering algorithm

on the unlabeled instances of each leaf to discover the true

centers of the dense regions within it. Instead, we use a

global parameter (N CELLS) to control the number of

centers. We set this parameters to 10 for all our experiments.

Finding a good choice of this parameter given the data set

and the privacy budget (the overall ε) is interesting future

work.

Since the secondary ensemble is built using the differen-

tially private primary classifier (and does not directly use

private data), the composition theorem 2 does not apply

here. Larger secondary ensembles do increase the accuracy

of the classifier. The curator, after having created the primary

ensemble may add a secondary ensemble as large as their

computational limitations permit. Our results were obtained

by setting the size of the secondary ensemble t to 200

trees. We observed that there is little additional utility to

be obtained by using even larger ensembles. Following the

same lines of reasoning as in [13], we set the height of each

tree to h = min(k/2�, (logb n�1)), where b denotes the

average number of values taken by the attributes of the data

set and n is the number of rows in the private database.

We performed our experiments on three data sets from the

UCI Machine Learning Repository [1], namely the Nursery,

Mushroom and Congressional Voting Records data sets

and on one synthetic data set that we generated. We removed

from the Mushroom database the attribute that has missing

entries. In the Congressional Voting Records database, we

handled missing data by replacing them with the majority

vote for that bill. The synthetic data set was generated from

a handmade Boolean decision tree. We added noise to the

data set by flipping each class label with a probability of

0.05 to make these synthetic data set more realistic. See

Table I for data characteristics.

We split each data set randomly into the labeled and

unlabeled data sets for each run of the algorithm. We did

not use a fixed number or percentage of the original data set

for the labeled subset. Instead, after fixing ε at 0.5, for each

data set we repeatedly ran the supervised algorithm in [13]

with increasingly larger subsets until the error rate was no

worse than 0.3. We used this value as the size of the labeled

subset. For the Mushroom data set the size of the labeled

set was 2% of the overall data, for the Nursery data set

it amounted to about 20% of the overall data set, and for

the Congressional Voting Records data set we had to use

30% of the original data set as the size of the labeled subset.

This part of the experiment is for simulation purposes only.

In practice the curator will have a well defined labeled and

unlabeled set. We created 10 ensembles (each with its own

primary and secondary ensembles) for each data set. The

algorithm was run 10 times for each ensemble with privacy

parameter ε being varied from 0.5 to 1 in steps of 0.1. For

comparison, we also ran the algorithm from [13] with the

846846

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5 0.6 0.7 0.8 0.9 1

Epsilon

Er
ro

r R
at

e
AA

Labeled Only

Both

Figure 6. Error on the Nursery data set from the UCI Repository.

labeled data alone. We used the stratified cross-validation

technique available in Weka.

Results: The Figures 6, 7 and 8 show the improvement

in error rate of the RDT# Classifier over the differentially

private RDT classifier that uses only the labeled set in each

case. In Figure 9 we show the improvement in error rates

for the synthetic data set we used. The standard deviation

for error rates is in Table II.

As can be seen, the use of public unlabeled data can

indeed provide a noticeable decrease in error. Clearly, not all

data sets benefit equally from the availability of unlabeled

data. This non-uniformity is not a surprise and similar

observations have been made in the semi-supervised setting

in machine learning [19]. Although not seen directly in these

figures, we observed that classifiers in which the primary

ensemble had higher accuracy, unsurprisingly, had higher

accuracy overall. However, the relationship between the

accuracy of the primary ensemble and that of the overall

classifier is not simple. When accuracy of the primary

ensemble is close to the frequency of the most frequent

class label (see Table I), unlabeled examples do not help

very much. At the other end of the spectrum, when the

accuracy of the primary ensemble is very high, unlabeled

examples again provide only marginal help. Overall, as each

of these figures show, the RDT# Classifier algorithm has

good accuracy, even for relatively small data sets. It is to

be expected that the error rate decreases as the amount

of labeled data increases. Figure 10 shows the decrease in

error rate as the number of labeled instances increases in

the Mushroom data set. Figure 11 shows that unlabeled

instances are important as well; it shows the reduction in

the error rate as the size of the unlabeled set increases.

REFERENCES

[1] A. ASUNCION AND D.J. NEWMAN, UCI Machine Learning
Repository, 2007.

[2] A. BLUM, C. DWORK, F. MCSHERRY, AND K. NISSIM,
Practical privacy: The SuLQ framework, in PODS ’05, 2005,
pp. 128–138.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.5 0.6 0.7 0.8 0.9 1

Epsilon

Er
ro

r
Ra

te
A

A

Labeled Only

Both

Figure 7. Error on the Mushroom data set from the UCI Repository.

0

0.05

0.1

0.15

0.2

0.25

0.5 0.6 0.7 0.8 0.9 1

Epsilon

Er
ro

r R
ate

 A
A

Labeled Only

Both

Figure 8. Error on the Congressional Voting Records data set from the
UCI Repository.

Figure 9. Error on a synthetic data set. It is based on a function defined
on 9 attributes.

Figure 10. The error reduces as the size of the labeled set increases. The
experiments were run on the Mushroom data set.

847847

Data set # attribs # rows # Class labels Class Distribution
Nursery 8 12960 3 [33.3%,0.0%,2.5%,

32.9%,31.2%]
Mushroom 22 8124 2 [51.8%, 48.2%]
Cong. Votes 16 435 2 [45.2%, 54.8%]

Synth. Data 9 2000 2 [49.3%, 50.7%]

Table I
EXPERIMENTAL DATA CHARACTERISTICS

Data Set/ε = 0.5 0.6 0.7 0.8 0.9 1.0
Mushroom 0.019 0.019 0.0123 0.015 0.02 0.015

Nursery 0.042 0.03 0.031 0.026 0.028 0.025
Votes 0.030 0.023 0.018 0.013 0.014 0.018
Synth. 0.026 0.029 0.023 0.034 0.029 0.032

Table II
STANDARD DEVIATIONS FOR ALL DATA SETS FOR RDT# Classifier.

Figure 11. The error reduces as the size of the unlabeled set increases.
The experiments were run on the Nursery data set.

[3] A. BLUM, K. LIGETT, AND A. ROTH, A learning theory
approach to non-interactive database privacy, in STOC ’08,
2008, pp. 609–618.

[4] L. CHAO AND M. GEROME, An adaptive mechanism for
accurate query answering under differential privacy, Proc.
VLDB Endow., 5 (2012), pp. 514–525.

[5] O. CHAPELLE, B. SCHÖLKOPF, AND A. ZIEN, eds., Semi-
Supervised Learning, MIT Press, Cambridge, MA, 2006.

[6] C. DWORK, Differential privacy: A survey of results, in
TAMC : Theory and Applications of Models of Computation,
5th International Conference, 2008, pp. 1–19.

[7] , A firm foundation for private data analysis, Commun.
ACM, 54 (2011), pp. 86–95.

[8] CYNTHIA DWORK, FRANK MCSHERRY, KOBBI NISSIM,
AND ADAM SMITH, Calibrating noise to sensitivity in private
data analysis, in TCC, 2006, pp. 265–284.

[9] CYNTHIA DWORK, GUY N. ROTHBLUM, AND SALIL P.
VADHAN, Boosting and differential privacy, in FOCS, 2010,
pp. 51–60.

[10] W. FAN, H. WANG, P.S. YU, AND S. MA, Is random model
better? On its accuracy and efficiency, in ICDM ’03, 2003,
p. 51.

[11] A. FRIEDMAN AND A. SCHUSTER, Data mining with differ-
ential privacy, in KDD, 2010, pp. 493–502.

[12] K. GEORGIOS AND P. STAVROS, Practical differential pri-
vacy via grouping and smoothing, in Proc. 39th Int. Conf. of
VLDB, 2013, pp. 301–312.

[13] G. JAGANNATHAN, K. PILLAIPAKKAMNATT, AND R. N.
WRIGHT, A practical differentially private random decision
tree classifier, Trans. Data Privacy, 5 (2012), pp. 273–295.

[14] P. JAIN AND A. THAKURTA, Differentially private learning
with kernels, ICML, (2013), pp. 118–126.

[15] V. KARWA AND A. B. SLAVKOVIC, Differentially private
graphical degree sequences and synthetic graphs, in Privacy
in Statistical Databases, 2012, pp. 273–285.

[16] J. LEE AND C. CLIFTON, Differential identifiability, in Proc.
18th ACM SIGKDD, 2012, pp. 1041–1049.

[17] F. MCSHERRY AND K. TALWAR, Mechanism design via
differential privacy, in FOCS ’07, 2007, pp. 94–103.

[18] NOMAN MOHAMMED, RUI CHEN, BENJAMIN C. M. FUNG,
AND PHILIP S. YU, Differentially private data release for
data mining, in KDD, 2011, pp. 493–501.

[19] AARTI SINGH, ROBERT D. NOWAK, AND XIAOJIN ZHU,
Unlabeled data: Now it helps, now it doesn’t, in NIPS, 2008,
pp. 1513–1520.

[20] I. H. WITTEN AND E. FRANK, Data Mining: Practical
Machine Learning Tools and Techniques, Morgan Kaufmann,
2005.

848848

